Stochastic aspects of the unitary dual group
Autor: | Isabelle Baraquin |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB), Université de Bourgogne (UB)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Trace (linear algebra) 010102 general mathematics Mathematics - Operator Algebras Dual group Haar General Medicine Unitary matrix 01 natural sciences Unitary state Matrix (mathematics) 0103 physical sciences FOS: Mathematics 010307 mathematical physics 0101 mathematics Algebra over a field [MATH]Mathematics [math] Operator Algebras (math.OA) Cumulant Mathematics |
Zdroj: | Comptes Rendus. Mathématique Comptes Rendus. Mathématique, Académie des sciences (Paris), 2019, 357, pp.450-454. ⟨10.1016/j.crma.2019.05.001⟩ |
ISSN: | 1631-073X 1778-3569 |
DOI: | 10.1016/j.crma.2019.05.001⟩ |
Popis: | In this note, we study the asymptotic properties of the ⁎-distribution of traces of some matrices, with respect to the free Haar trace on the unitary dual group. The considered matrices are powers of the unitary matrix generating the Brown algebra. We proceed in two steps, first computing the free cumulants of any R-cyclic family, then characterizing the asymptotic ⁎-distributions of the traces of powers of the generating matrix, thanks to these free cumulants. In particular, we obtain that these traces are asymptotic ⁎-free circular variables. |
Databáze: | OpenAIRE |
Externí odkaz: |