Benchmarking an improved statistical adiabatic channel model for competing inelastic and reactive processes

Autor: Benjamin Desrousseaux, Jérôme Loreau, Maarten Konings, François Lique
Přispěvatelé: Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Horizon 2020 Framework Programme, H2020: 811363, European Research Council, ERC, Fonds Wetenschappelijk Onderzoek, FWO, KU Leuven: STG-19-00313, Institut Universitaire de France, IUF, Vlaamse regering, Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2022
Předmět:
Zdroj: Journal of Chemical Physics
Journal of Chemical Physics, American Institute of Physics, 2021, 155 (10), pp.104302. ⟨10.1063/5.0062388⟩
Journal of Chemical Physics, 2021, 155 (10), pp.104302. ⟨10.1063/5.0062388⟩
ISSN: 0021-9606
1089-7690
DOI: 10.48550/arxiv.2204.06994
Popis: Inelastic collisions and elementary chemical reactions proceeding through the formation and subsequent decay of an intermediate collision complex, with an associated deep well on the potential energy surface, pose a challenge for accurate fully quantum mechanical approaches, such as the close-coupling method. In this study, we report on the theoretical prediction of temperature-dependent state-to-state rate coefficients for these complex-mode processes, using a statistical quantum method. This statistical adiabatic channel model is benchmarked by a direct comparison using accurate rate coefficients from the literature for a number of systems (H2 + H+, HD + H+, SH+ + H, and CH+ + H) of interest in astrochemistry and astrophysics. For all of the systems considered, an error of less than factor 2 was found, at least for the dominant transitions and at low temperatures, which is sufficiently accurate for applications in the above mentioned disciplines.
Comment: 11 pages, 5 figures
Databáze: OpenAIRE