Benchmarking an improved statistical adiabatic channel model for competing inelastic and reactive processes
Autor: | Benjamin Desrousseaux, Jérôme Loreau, Maarten Konings, François Lique |
---|---|
Přispěvatelé: | Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Horizon 2020 Framework Programme, H2020: 811363, European Research Council, ERC, Fonds Wetenschappelijk Onderzoek, FWO, KU Leuven: STG-19-00313, Institut Universitaire de France, IUF, Vlaamse regering, Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2022 |
Předmět: |
Astrochemistry
Rate coefficients Inelastic collision General Physics and Astronomy FOS: Physical sciences Close-coupling method Astrophysics 010402 general chemistry Channel models 7. Clean energy 01 natural sciences Chemical reaction Potential energy Physics - Chemical Physics 0103 physical sciences Elementary chemical reaction Quantum dynamics Physical and Theoretical Chemistry Reactive process Adiabatic process Quantum [PHYS]Physics [physics] Physics Chemical Physics (physics.chem-ph) 010304 chemical physics Statistical adiabatic channel models Quantum mechanical Collision 0104 chemical sciences Potential energy surfaces Potential energy surface Temperature dependent Atomic and molecular collisions Reaction intermediates Atomic physics Molecular physics Quantum chemistry |
Zdroj: | Journal of Chemical Physics Journal of Chemical Physics, American Institute of Physics, 2021, 155 (10), pp.104302. ⟨10.1063/5.0062388⟩ Journal of Chemical Physics, 2021, 155 (10), pp.104302. ⟨10.1063/5.0062388⟩ |
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.48550/arxiv.2204.06994 |
Popis: | Inelastic collisions and elementary chemical reactions proceeding through the formation and subsequent decay of an intermediate collision complex, with an associated deep well on the potential energy surface, pose a challenge for accurate fully quantum mechanical approaches, such as the close-coupling method. In this study, we report on the theoretical prediction of temperature-dependent state-to-state rate coefficients for these complex-mode processes, using a statistical quantum method. This statistical adiabatic channel model is benchmarked by a direct comparison using accurate rate coefficients from the literature for a number of systems (H2 + H+, HD + H+, SH+ + H, and CH+ + H) of interest in astrochemistry and astrophysics. For all of the systems considered, an error of less than factor 2 was found, at least for the dominant transitions and at low temperatures, which is sufficiently accurate for applications in the above mentioned disciplines. Comment: 11 pages, 5 figures |
Databáze: | OpenAIRE |
Externí odkaz: |