An explorative study towards the chemical synthesis of the immunoglobulin G1 Fc CH3 domain
Autor: | Cornelia Roschger, Vesna Stanojlovic, Chiara Cabrele, Luigi Grassi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Glycosylation
Peptide 010402 general chemistry 01 natural sciences Biochemistry Chemical synthesis solid phase peptide synthesis chemistry.chemical_compound Structural Biology Drug Discovery native chemical ligation Peptide synthesis Humans Fc CH3 domain Deamidation Molecular Biology Research Articles Pharmacology chemistry.chemical_classification Pseudoproline pseudoproline 010405 organic chemistry Organic Chemistry General Medicine Native chemical ligation Fusion protein Recombinant Proteins 0104 chemical sciences Immunoglobulin Fc Fragments Protein Structure Tertiary chemistry Immunoglobulin G Molecular Medicine Research Article |
Zdroj: | Journal of Peptide Science |
ISSN: | 1099-1387 1075-2617 |
Popis: | Monoclonal antibodies, fusion proteins including the immunoglobulin fragment c (Ig Fc) CH2-CH3 domains, and engineered antibodies are prominent representatives of an important class of drugs and drug candidates, which are referred to as biotherapeutics or biopharmaceuticals. These recombinant proteins are highly heterogeneous due to their glycosylation pattern. In addition, enzyme-independent reactions, like deamidation, dehydration, and oxidation of sensitive side chains, may contribute to their heterogeneity in a minor amount. To investigate the biological impact of a spontaneous chemical modification, especially if found to be recurrent in a biotherapeutic, it would be necessary to reproduce it in a homogeneous manner. Herein, we undertook an explorative study towards the chemical synthesis of the IgG1 Fc CH3 domain, which has been shown to undergo spontaneous changes like succinimide formation and methionine oxidation. We used Fmoc-solid-phase peptide synthesis (SPPS) and native chemical ligation (NCL) to test the accessibility of large fragments of the IgG1 Fc CH3 domain. In general, the incorporation of pseudoproline dipeptides improved the quality of the crude peptide precursors; however, sequences larger than 44 residues could not be achieved by standard stepwise elongation with Fmoc-SPPS. In contrast, the application of NCL with cysteine residues, which were either native or introduced ad hoc, allowed the assembly of the C-terminal IgG1 Fc CH3 sequence 371 to 450. The syntheses reported here show advantages and limitations of the chemical approaches chosen for the preparation of the synthetic IgG1 Fc CH3 domain and will guide future plans towards the synthesis of both the native and selectively modified full-length domain. |
Databáze: | OpenAIRE |
Externí odkaz: |