Periodic orbits associated to Hamiltonian functions of degree four

Autor: Dante Carrasco-Olivera, Marco Uribe, Claudio Vidal
Rok vydání: 2021
Předmět:
Zdroj: JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
ISSN: 1776-0852
DOI: 10.1080/14029251.2014.936756
Popis: We consider the Hamiltonian polynomial function H of degree fourth given by either H (x, y, px, py) = ( + ) + (x2 +y2) + V3(x;y) + V4(x,y), or H (x, y, px, py) = (- + ) + (-x2 +y2) + V3 (x, y) + V4 (x, y), where V3 (x, y) and V4 (x, y) are homogeneous polynomials of degree three and four, respectively. Our main objective is to prove the existence and stability of periodic solutions associated to H using the classical averaging method.
Databáze: OpenAIRE