Skypattern mining: From pattern condensed representations to dynamic constraint satisfaction problems

Autor: Arnaud Soulet, Chedy Rassi, Willy Ugarte, Samir Loudni, Patrice Boizumault, Bruno Crmilleux, Marc Plantevit, Alban Lepailleur
Přispěvatelé: Equipe CODAG - Laboratoire GREYC - UMR6072, Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Université (NU)-Normandie Université (NU), Data Mining and Machine Learning (DM2L), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Knowledge representation, reasonning (ORPAILLEUR), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Bases de données et traitement des langues naturelles (BDTLN), Laboratoire d'Informatique Fondamentale et Appliquée de Tours (LIFAT), Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Artificial Intelligence
Artificial Intelligence, 2017, 244, pp.48-69. ⟨10.1016/j.artint.2015.04.003⟩
Artificial Intelligence, Elsevier, 2017, 244, pp.48-69. ⟨10.1016/j.artint.2015.04.003⟩
ISSN: 0004-3702
Popis: International audience; Data mining is the study of how to extract information from data and express it as useful knowledge. One of its most important subfields, pattern mining, involves searching and enumerating interesting patterns in data. Various aspects of pattern mining are studied in the theory of computation and statistics. In the last decade, the pattern mining community has witnessed a sharp shift from efficiency-based approaches to methods which can extract more meaningful patterns. Recently, new methods adapting results from studies of economic efficiency and multi-criteria decision analyses such as Pareto efficiency, or skylines, have been studied. Within pattern mining, this novel line of research allows the easy expression of preferences according to a dominance relation. This approach is useful from a user-preference point of view and tends to promote the use of pattern mining algorithms for non-experts. We present a significant extension of our previous work [1,2] on the discovery of skyline patterns (or "skypatterns") based on the theoretical relationships with condensed representations of patterns. We show how these relationships facilitate the computation of skypatterns and we exploit them to propose a flexible and efficient approach to mine skypatterns using a dynamic constraint satisfaction problems (CSP) framework. We present a unified methodology of our different approaches towards the same goal. This work is supported by an extensive experimental study allowing us to illustrate the strengths and weaknesses of each approach.
Databáze: OpenAIRE