Fluorescent siderophore-based chemosensors: iron(III) quantitative determinations

Autor: Tania Palanché, Abraham Shanzer, Mohamed A. Abdallah, Frank Marmolle, Anne-Marie Albrecht-Gary
Rok vydání: 1999
Předmět:
Zdroj: JBIC Journal of Biological Inorganic Chemistry. 4:188-198
ISSN: 1432-1327
0949-8257
DOI: 10.1007/s007750050304
Popis: A highly sensitive and selective method is described for a rapid and easy determination of iron(III). This procedure is based on fluorimetric detection combined with the attractive properties of siderophores and biomimetic ligands, which are strong and selective ferric chelators. Azotobactin delta, a bacterial fluorescent siderophore, three fluorescent derivatives of desferriferrioxamine B with a linear structure (NBD-, MA-, NCP-desferriferrioxamine B) and one tripodal biomimetic ligand of desferriferrichrome carrying an anthracenyl fluorescent probe were examined. A very efficient static quenching mechanism by iron was observed for all the ligands considered in this work. Our results identify azotobactin delta as the most promising chemosensor of ferric traces in water, more sensitive than the NBD-desferriferrioxamine B fluorescent ligand. Under more lipophilic conditions, the anthryl-desferriferrichrome biomimetic analogue showed similar analytical potential and was found to be more sensitive than the lipophilic MA- and NCP-desferriferrioxamine B. Their detection limits were respectively 0.5 ng mL-1 for azotobactin delta and 0.6 ng mL-1 for the anthryl tripodal chelator. The calibration curves were linear over the range 0-95 ng mL-1 and 0-180 ng mL-1. Various foreign cations have been examined and only copper(II) and aluminium(III) were shown to interfere when present in similar concentrations as iron(III). The developed procedure using fluorescent siderophores or biomimetic ligands of iron(III) may be applied (1) to monitor iron-(III)-dependent biological systems and (2) to determine iron(III) quantitatively in natural waters and in biological systems.
Databáze: OpenAIRE