Free Cells in Hyperspaces of Graphs
Autor: | José Ángel Juárez Morales, Jesús Romero Valencia, Gerardo Reyna Hernández, Omar Rosario Cayetano |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Physics
General Mathematics 010102 general mathematics Structure (category theory) MathematicsofComputing_GENERAL 0102 computer and information sciences graph 01 natural sciences Graph dendrite Combinatorics Arc (geometry) Hyperspace Metric space 010201 computation theory & mathematics Computer Science (miscellaneous) Dendrite (mathematics) hyperspace QA1-939 Dendroid 0101 mathematics Engineering (miscellaneous) Mathematics dendroid |
Zdroj: | Mathematics, Vol 9, Iss 1627, p 1627 (2021) Mathematics Volume 9 Issue 14 |
ISSN: | 2227-7390 |
Popis: | Often for understanding a structure, other closely related structures with the former are associated. An example of this is the study of hyperspaces. In this paper, we give necessary and sufficient conditions for the existence of finitely-dimensional maximal free cells in the hyperspace C(G) of a dendrite G then, we give necessary and sufficient conditions so that the aforementioned result can be applied when G is a dendroid. Furthermore, we prove that the arc is the unique arcwise connected, compact, and metric space X for which the anchored hyperspace Cp(X) is an arc for some p∈X. |
Databáze: | OpenAIRE |
Externí odkaz: |