Understanding the Role of Pattern Geometry on Nanofiltration Threshold Flux
Autor: | David A. Ladner, Anna Malakian, Lucas Messick, Zuo Zhou, Scott M. Husson, Tara N. Spitzer |
---|---|
Rok vydání: | 2020 |
Předmět: |
Materials science
Filtration and Separation Geometry 02 engineering and technology lcsh:Chemical technology membrane patterning 010402 general chemistry 01 natural sciences Article threshold flux law.invention Colloid Flux (metallurgy) thin-film composite membranes law Thermal Chemical Engineering (miscellaneous) lcsh:TP1-1185 lcsh:Chemical engineering Filtration Fouling Process Chemistry and Technology colloidal fouling lcsh:TP155-156 021001 nanoscience & nanotechnology 0104 chemical sciences Membrane membrane surface modification Nanofiltration 0210 nano-technology Embossing |
Zdroj: | Membranes Volume 10 Issue 12 Membranes, Vol 10, Iss 445, p 445 (2020) |
ISSN: | 2077-0375 |
Popis: | Colloidal fouling can be mitigated by membrane surface patterning. This contribution identifies the effect of different pattern geometries on fouling behavior. Nanoscale line-and-groove patterns with different feature sizes were applied by thermal embossing on commercial nanofiltration membranes. Threshold flux values of as-received, pressed, and patterned membranes were determined using constant flux, cross-flow filtration experiments. A previously derived combined intermediate pore blocking and cake filtration model was applied to the experimental data to determine threshold flux values. The threshold fluxes of all patterned membranes were higher than the as-received and pressed membranes. The pattern fraction ratio (PFR), defined as the quotient of line width and groove width, was used to analyze the relationship between threshold flux and pattern geometry quantitatively. Experimental work combined with computational fluid dynamics simulations showed that increasing the PFR leads to higher threshold flux. As the PFR increases, the percentage of vortex-forming area within the pattern grooves increases, and vortex-induced shielding increases. This study suggests that the PFR should be higher than 1 to produce patterned membranes with maximal threshold flux values. Knowledge generated in this study can be applied to other feature types to design patterned membranes for improved control over colloidal fouling. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |