Microscopic modelling of orientation kinematics of non-spherical particles suspended in confined flows using unilateral mechanics

Autor: Adrien Scheuer, Francisco Chinesta, Emmanuelle Abisset-Chavanne, Roland Keunings
Přispěvatelé: Institut de Recherche en Génie Civil et Mécanique (GeM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université Catholique de Louvain = Catholic University of Louvain (UCL), Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)
Rok vydání: 2018
Předmět:
Zdroj: Comptes Rendus Mécanique
Comptes Rendus Mécanique, Elsevier, 2018, 346, pp.48-56. ⟨10.1016/j.crme.2017.11.003⟩
ISSN: 1631-0721
DOI: 10.1016/j.crme.2017.11.003
Popis: The properties of reinforced polymers strongly depend on the microstructural state, that is, the orientation state of the fibres suspended in the polymeric matrix, induced by the forming process. Understanding flow-induced anisotropy is thus a key element to optimize both materials and process. Despite the important progresses accomplished in the modelling and simulation of suspensions, few works addressed the fact that usual processing flows evolve in confined configurations, where particles characteristic lengths may be greater than the thickness of the narrow gaps in which the flow takes place. In those circumstances, orientation kinematics models proposed for unconfined flows must be extended to the confined case. In this short communication, we propose an alternative modelling framework based on the use of unilateral mechanics, consequently exhibiting a clear analogy with plasticity and contact mechanics. This framework allows us to revisit the motion of confined particles in Newtonian and non-Newtonian matrices. We also prove that the confined kinematics provided by this model are identical to those derived from microstructural approaches (Perez et al. (2016) [1] ).
Databáze: OpenAIRE