Integral geometry of exceptional spheres

Autor: Gil Solanes, Thomas Wannerer
Rok vydání: 2021
Předmět:
Zdroj: J. Differential Geom. 117, no. 1 (2021), 137-191
ISSN: 0022-040X
DOI: 10.4310/jdg/1609902019
Popis: The algebras of valuations on $S^6$ and $S^7$ invariant under the actions of $\mathrm G_2$ and $\mathrm{Spin}(7)$ are shown to be isomorphic to the algebra of translation-invariant valuations on the tangent space at a point invariant under the action of the isotropy group. This is in analogy with the cases of real and complex space forms, suggesting the possibility that the same phenomenon holds in all Riemannian isotropic spaces. Based on the description of the algebras the full array of kinematic formulas for invariant valuations and curvature measures in $S^6$ and $S^7$ is computed. A key technical point is an extension of the classical theorems of Klain and Schneider on simple valuations.
Databáze: OpenAIRE