Adaptive Sliding Mode Disturbance Observer and Deep Reinforcement Learning based Robust Motion Control for Micropositioners

Autor: Shiyun Liang, Ruidong Xi, Xiao Xiao, Zhixin Yang
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Popis: The robust control of high precision electromechanical systems, such as micropositioners, is challenging in terms of the inherent high nonlinearity, the sensitivity to external interference, and the complexity of accurate identification of the model parameters. To cope with these problems, this work investigates a disturbance observer-based deep reinforcement learning control strategy to realize high robustness and precise tracking performance. Reinforcement learning has shown great potential as optimal control scheme, however, its application in micropositioning systems is still rare. Therefore, embedded with the integral differential compensator (ID), deep deterministic policy gradient (DDPG) is utilized in this work with the ability to not only decrease the state error but also improves the transient response speed. In addition, an adaptive sliding mode disturbance observer (ASMDO) is proposed to further eliminate the collective effect caused by the lumped disturbances. The sterling performance is revealed with intensive tracking simulation experiments and demonstrates the improvement in the accuracy and response time of the controller.
Databáze: OpenAIRE