Variations of Hodge Structures of Rank Three k-Higgs Bundles and Moduli Spaces of Holomorphic Triples
Autor: | Ronald A. Zúñiga-Rojas |
---|---|
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Mathematics::Complex Variables 010102 general mathematics Holomorphic function Algebraic geometry Rank (differential topology) 01 natural sciences Cohomology Moduli space Mathematics - Algebraic Geometry 14F45 14D07 14H60 Mathematics::Algebraic Geometry Differential geometry 0103 physical sciences FOS: Mathematics 010307 mathematical physics Geometry and Topology Isomorphism 0101 mathematics Mathematics::Symplectic Geometry Algebraic Geometry (math.AG) Hodge structure Mathematics |
DOI: | 10.48550/arxiv.1803.01936 |
Popis: | There is an isomorphism between the moduli spaces of $\sigma$-stable holomorphic triples and some of the critical submanifolds of the moduli space of $k$-Higgs bundles of rank three, whose elements $(E,\varphi^k)$ correspond to variations of Hodge structure, VHS. There are special embeddings on the moduli spaces of $k$-Higgs bundles of rank three. The main objective here is to study the cohomology of the critical submanifolds of such moduli spaces, extending those embeddings to moduli spaces of holomorphic triples. Comment: 35 pages. New version of "On the Cohomology of the Moduli Space of $\sigma$-Stable Triples and $(1,2)$-Variations of Hodge Structures", and "Variations of Hodge Structures of Rank Three k-Higgs Bundles" |
Databáze: | OpenAIRE |
Externí odkaz: |