Popis: |
Spatial noise reduction algorithms ("beamformers") can considerably improve speech reception thresholds (SRTs) for bimodal cochlear implant (CI) users. The goal of this study was to model SRTs and SRT-benefit due to beamformers for bimodal CI users. Two existing model approaches varying in computational complexity and binaural processing assumption were compared: (i) the framework of auditory discrimination experiments (FADE) and (ii) the binaural speech intelligibility model (BSIM), both with CI and aided hearing-impaired front-ends. The exact same acoustic scenarios, and open-access beamformers as in the comparison clinical study Zedan et al. (2021) were used to quantify goodness of prediction. FADE was capable of modeling SRTs ab-initio, i.e., no calibration of the model was necessary to achieve high correlations and low root-mean square errors (RMSE) to both, measured SRTs (r = 0.85, RMSE = 2.8 dB) and to measured SRT-benefits (r = 0.96). BSIM achieved somewhat poorer predictions to both, measured SRTs (r = 0.78, RMSE = 6.7 dB) and to measured SRT-benefits (r = 0.91) and needs to be calibrated for matching average SRTs in one condition. Greatest deviations in predictions of BSIM were observed in diffuse multi-talker babble noise, which were not found with FADE. SRT-benefit predictions of both models were similar to instrumental signal-to-noise ratio (iSNR) improvements due to the beamformers. This indicates that FADE is preferrable for modeling absolute SRTs. However, for prediction of SRT-benefit due to spatial noise reduction algorithms in bimodal CI users, the average iSNR is a much simpler approach with similar performance. |