Bivariant Theories in Motivic Stable Homotopy

Autor: Frédéric Déglise
Přispěvatelé: Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Documenta Mathematica
Documenta Mathematica, Universität Bielefeld, 2018, 23, pp.997-1076. ⟨10.25537/dm.2018v23.997-1076⟩
ISSN: 1431-0643
1431-0635
DOI: 10.25537/dm.2018v23.997-1076⟩
Popis: The purpose of this work is to study the notion of bivariant theory introduced by Fulton and MacPherson in the context of motivic stable homotopy theory, and more generally in the broader framework of the Grothendieck six functors formalism. We introduce several kinds of bivariant theories associated with a suitable ring spectrum, and we construct a system of orientations (called fundamental classes) for global complete intersection morphisms between arbitrary schemes. These fundamental classes satisfy all the expected properties from classical intersection theory and lead to Gysin morphisms, Riemann-Roch formulas as well asduality statements, valid for general schemes, including singular ones and without need of a base field. Applications are numerous, ranging from classical theories (Betti homology) to generalized theories (algebraic K-theory, algebraic cobordism) and more abstractly to \'etale sheaves (torsion and $l$-adic) and mixed motives.
Documenta Mathematica, 2018, vol. 23, p. 997-1076, 1431-0643
Databáze: OpenAIRE