Quasineutral limit for Vlasov–Poisson via Wasserstein stability estimates in higher dimension
Autor: | Mikaela Iacobelli, Daniel Han-Kwan |
---|---|
Přispěvatelé: | Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Department of Pure Mathematics and Mathematical Statistics (DPMMS), Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS), University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM) |
Rok vydání: | 2017 |
Předmět: |
Work (thermodynamics)
Applied Mathematics 010102 general mathematics Mathematical analysis Poisson distribution 01 natural sciences Stability (probability) 010101 applied mathematics symbols.namesake Dimension (vector space) Physics::Plasma Physics Physics::Space Physics symbols [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Limit (mathematics) 0101 mathematics ComputingMilieux_MISCELLANEOUS Analysis Mathematics |
Zdroj: | Journal of Differential Equations Journal of Differential Equations, Elsevier, 2017, 263 (1), pp.1-25. ⟨10.1016/j.jde.2017.01.018⟩ |
ISSN: | 0022-0396 1090-2732 |
DOI: | 10.1016/j.jde.2017.01.018 |
Popis: | This work is concerned with the quasineutral limit of the Vlasov–Poisson system in two and three dimensions. We justify the formal limit for very small but rough perturbations of analytic initial data, generalizing the results of [12] to higher dimension. |
Databáze: | OpenAIRE |
Externí odkaz: |