Are Histones the Targets for Flavan-3-ols (Catechins) in Nuclei?

Autor: Jürgen Polster, Heike Dithmar, Walter Feucht
Rok vydání: 2003
Předmět:
Zdroj: Biological Chemistry. 384
ISSN: 1431-6730
DOI: 10.1515/bc.2003.112
Popis: Binding of flavan-3-ols to nuclei is characteristic of Tsuga canadensis (coniferous tree). This is achieved with the DMACA reagent (p-dimethylamino-cinnamaldehyde), which stains almost exclusively monomeric and oligomeric flavan-3-ols with an intense blue colour. Deep flavanol staining also occurred when calf cells of small intestine were enriched with added catechins. In order to detect the components of nuclei that may associate with catechins, the principal components of chromatin (DNA, histones) were subjected to UV-VIS spectroscopic titration. DNA or histone sulphate containing the histones H1, H2A, H2B, H3 and H4 were dissolved in cationic and anionic buffers (Tris, phosphate) at different pH values (pH 8.0, 7.4 and 7.0) and titrated with EGCG (epigallocatechin gallate) or catechin. The results show that DNA of calf thymus and the catechins investigated form no spectroscopically detectable association equilibria. However, strong association complexes are found between histone sulphate and EGCG or catechin by means of the Mauser diagrams (A and AD diagrams). The association equilibria can be accompanied by aggregation (precipitation) of histone proteins, especially initiated by EGCG. The titration equilibria are spectroscopically more pronounced in Tris buffers at higher pH values than at lower values, whereas in phosphate buffers the opposite trend is found. Surprisingly, catechin shows nearly no interactions with histone sulphate in phosphate buffers in the pH range 7.0-8.0, which is in contrast to EGCG. Fundamentally, the targets of chromosomes for catechins seem to be the histone proteins of chromatin.
Databáze: OpenAIRE