Dynamic Fault Tolerant Topology Control for Wireless Sensor Network Based on Node Cascading Failure

Autor: Yang Xiao
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: International Journal of Online Engineering (iJOE), Vol 14, Iss 05, Pp 118-128 (2018)
ISSN: 1861-2121
1868-1646
Popis: To address the node cascading failure (CF) of the wireless sensor networks (WSNs), considering such factors as node load and maximum capacity in scale-free topology, this paper establishes the WSN dynamic fault tolerant topology model based on node cascading failure, analyses the relationships between node load, topology and dynamic fault tolerance, and demonstrates the proposed model through simulation test. It studies the effects of topology parameter and load in case of random node failure in the network node cascading failure, and utilizes the theoretical derivation method to derive the structural feature of scale-free topology and the capacity limit for the WSNs large-scale cascading failure, effectively enhancing the cascading fault tolerance of traditional WSNs. The simulation test results show that, with the degree distribution parameter C increasing, the minimum network node degree will increase accordingly, and in highly intensive topology, the dynamic fault tolerance will be better; with the parameter λ increasing, the maximum degree of the network node will gradually decrease, and the degree distribution of topology structure tends to be uniform, so that the large-scale cascading failure caused by node failure will have less influence on the WSN, and further improve the dynamic fault tolerance performance of the system.
Databáze: OpenAIRE