Quantum sensing of a coherent single spin excitation in a nuclear ensemble

Autor: Mete Atatüre, Leon Zaporski, Maxime Hugues, Daniel M. Jackson, C. Le Gall, Clara Bachorz, Edmund Clarke, Dorian Gangloff, J. H. Bodey
Přispěvatelé: Centre de recherche sur l'hétéroepitaxie et ses applications (CRHEA), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Rok vydání: 2020
Předmět:
Zdroj: Nature Physics
Nature Physics, Nature Publishing Group, 2021, 17 (5), pp.585-590. ⟨10.1038/s41567-020-01161-4⟩
ISSN: 1745-2473
1476-4636
DOI: 10.48550/arxiv.2008.09541
Popis: Accessing an ensemble of coherently interacting objects at the level of single quanta via a proxy qubit is transformative in the investigations of emergent quantum phenomena. An isolated nuclear spin ensemble is a remarkable platform owing to its coherence, but sensing its excitations with single spin precision has remained elusive. Here we achieve quantum sensing of a single nuclear-spin excitation (a nuclear magnon) in a dense ensemble of approximately 80,000 nuclei. A Ramsey measurement on the electron proxy qubit enables us to sense the hyperfine shift induced by a single nuclear magnon. We resolve multiple magnon modes distinguished by atomic species and spin polarity via the spectral dependence of this hyperfine shift. Finally, we observe the time-dependent shift induced by collective Rabi oscillations, revealing the competition between the buildup of quantum correlations and decoherence in the ensemble. These techniques could be extended to probe the engineered quantum states of the ensemble such as long-lived memory states. A single excitation in a semiconductor nuclear spin ensemble is detected with parts-per-million accuracy using the coupling between the ensemble and an electron-spin quantum dot.
Databáze: OpenAIRE