Longitudinal metabarcode analysis of karst bacterioplankton microbiomes provide evidence of epikarst to cave transport and community succession
Autor: | Robert D Vangundy, Aubrey Bruce Cahoon, Teresa L Brown, Dylan R Richardson, Kendall V Morse |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Community succession
Population Biodiversity lcsh:Medicine Ecological succession Ecosystem Science Freshwater Biology Microbiology General Biochemistry Genetics and Molecular Biology 03 medical and health sciences Epikarst Cave education 030304 developmental biology 0303 health sciences education.field_of_study geography geography.geographical_feature_category Ecohydrology 030306 microbiology Ecology General Neuroscience lcsh:R General Medicine Bacterioplankton social sciences Karst musculoskeletal system humanities Metabarcoding Karst cave Microbiome General Agricultural and Biological Sciences Surface water Geology Groundwater |
Zdroj: | PeerJ PeerJ, Vol 9, p e10757 (2021) |
ISSN: | 2167-8359 |
Popis: | Caves are often assumed to be static environments separated from weather changes experienced on the surface. The high humidity and stability of these subterranean environments make them attractive to many different organisms including microbes such as bacteria and protists. Cave waters generally originate from the surface, may be filtered by overlying soils, can accumulate in interstitial epikarst zones underground, and emerge in caves as streams, pools and droplets on speleothems. Water movement is the primary architect of karst caves, and depending on the hydrologic connectivity between surface and subsurface, is the most likely medium for the introduction of microbes to caves. Recently published metabarcoding surveys of karst cave soils and speleothems have suggested that the vast majority of bacteria residing in these habitats do not occur on the surface, calling into question the role of microbial transport by surface waters. The purpose of this study was to use metabarcoding to monitor the aquatic prokaryotic microbiome of a cave for 1 year, conduct longitudinal analyses of the cave’s aquatic bacterioplankton, and compare it to nearby surface water. Water samples were collected from two locations inside Panel Cave in Natural Tunnel State Park in Duffield, VA and two locations outside of the cave. Of the two cave locations, one was fed by groundwater and drip water and the other by infiltrating surface water. A total of 1,854 distinct prokaryotic ASVs were detected from cave samples and 245 (13.1%) were not found in surface samples. PCo analysis demonstrated a marginal delineation between two cave sample sites and between cave and surface microbiomes suggesting the aquatic bacterioplankton in a karst cave is much more similar to surface microbes than reported from speleothems and soils. Most surprisingly, there was a cave microbe population and diversity bloom in the fall months whereas biodiversity remained relatively steady on the surface. The cave microbiome was more similar to the surface before the bloom than during and afterwards. This event demonstrates that large influxes of bacteria and particulate organic matter can enter the cave from either the surface or interstitial zones and the divergence of the cave microbiome from the surface demonstrates movement of microbes from the epikarst zones into the cave. |
Databáze: | OpenAIRE |
Externí odkaz: |