On the Gross-Stark Conjecture

Autor: Mahesh Kakde, Kevin Ventullo, Samit Dasgupta
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Dasgupta, S, Kakde, M & Ventullo, K 2018, ' On the Gross-Stark Conjecture ', ANNALS OF MATHEMATICS, vol. 188, no. 3, pp. 833-870 . https://doi.org/10.4007/annals.2018.188.3.3
Popis: In 1980, Gross conjectured a formula for the expected leading term at $s=0$ of the Deligne--Ribet $p$-adic $L$-function associated to a totally even character $\psi$ of a totally real field $F$. The conjecture states that after scaling by $L(\psi \omega^{-1}, 0)$, this value is equal to a $p$-adic regulator of units in the abelian extension of $F$ cut out by $\psi \omega^{-1}$. In this paper, we prove Gross's conjecture.
Comment: 38 pages
Databáze: OpenAIRE