Thermal Defect Engineering of Precious Group Metal–Organic Frameworks: A Case Study on Ru/Rh-HKUST-1 Analogues
Autor: | Yuemin Wang, Miryam Gil-Calvo, Mustapha Soukri, Hana Bunzen, Werner R. Heinz, Roland A. Fischer, Christof Wöll, Iker Agirrezabal-Telleria, Junjun Wang, Raphael Junk, Ignacio Luz, Jan Berger, Dmitry I. Sharapa, Felix Studt, Markus Drees |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Technology
Materials science 010405 organic chemistry Hydride Decarboxylation Infrared spectroscopy 010402 general chemistry 01 natural sciences 0104 chemical sciences Catalysis Metal Crystallography Oxidation state visual_art visual_art.visual_art_medium General Materials Science Density functional theory Metal-organic framework ddc:600 |
Zdroj: | ACS applied materials & interfaces, 12 (36), 40635–40647 |
ISSN: | 1944-8244 1944-8252 |
Popis: | A methodology is introduced for controlled postsynthetic thermal defect engineering (TDE) of precious group metal-organic frameworks (PGM-MOFs). The case study is based on the Ru/Rh analogues of the archetypical structure [Cu3(BTC)2] (HKUST-1; BTC = 1,3,5-benzenetricarboxylate). Quantitative monitoring of the TDE process and extensive characterization of the samples employing a complementary set of analytical and spectroscopic techniques reveal that the compositionally very complex TDE-MOF materials result from the elimination and/or fragmentation of ancillary ligands and/or linkers. TDE involves the preferential secession of acetate ligands, intrinsically introduced via coordination modulation during synthesis, and the gradual decarboxylation of ligator sites of the framework linker BTC. Both processes lead to modified Ru/Rh paddlewheel nodes. These nodes exhibit a lowered average oxidation state and more accessible open metal centers, as deduced from surface-ligand IR spectroscopy using CO as a probe and supported by density functional theory (DFT)-based computations. The monometallic and the mixed-metal PGM-MOFs systematically differ in their TDE properties and, in particular in the hydride generation ability (HGA). This latter property is an important indicator for the catalytic activity of PGM-MOFs, as demonstrated by the ethylene dimerization reaction to 1-butene. |
Databáze: | OpenAIRE |
Externí odkaz: |