Estimation of Model Error Using Bayesian Model-Scenario Averaging with Maximum a Posterori-Estimates

Autor: Martin Schmelzer, Paola Cinnella, Wouter N. Edeling, Richard P. Dwight
Přispěvatelé: Delft University of Technology (TU Delft), Stanford University, Laboratoire de Dynamique des Fluides (DynFluid), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)
Rok vydání: 2018
Předmět:
Zdroj: Uncertainty Management for Robust Industrial Design in Aeronautics ISBN: 9783319777665
Uncertainty Management for Robust Industrial Design in Aeronautics
Uncertainty Management for Robust Industrial Design in Aeronautics, Springer International Publishing, pp.53-69, 2018, 978-3-319-77767-2. ⟨10.1007/978-3-319-77767-2_4⟩
DOI: 10.1007/978-3-319-77767-2_4
Popis: International audience; The lack of an universal modelling approach for turbulence in Reynolds-Averaged Navier–Stokes simulations creates the need for quantifying the modelling error without additional validation data. Bayesian Model-Scenario Averaging (BMSA), which exploits the variability on model closure coefficients across several flow scenarios and multiple models, gives a stochastic, a posteriori estimate of a quantity of interest. The full BMSA requires the propagation of the posterior probability distribution of the closure coefficients through a CFD code, which makes the approach infeasible for industrial relevant flow cases. By using maximum a posteriori (MAP) estimates on the posterior distribution, we drastically reduce the computational costs. The approach is applied to turbulent flow in a pipe at Re= 44,000 over 2D periodic hills at Re=5600, and finally over a generic falcon jet test case (Industrial challenge IC-03 of the UMRIDA project).
Databáze: OpenAIRE