External validation of prognostic models to predict stillbirth using International Prediction of Pregnancy Complications (IPPIC) Network database: individual participant data meta-analysis

Autor: Allotey, J., Whittle, R., Snell, K. I. E., Smuk, M., Townsend, R., von Dadelszen, P., Heazell, A. E. P., Magee, L., Smith, G. C. S., Sandall, J., Thilaganathan, B., Zamora, J., Riley, R. D., Khalil, A., Thangaratinam, S., Coomarasamy, A., Kwong, A., Savitri, A. I., Salvesen, K. A., Bhattacharya, S., Uiterwaal, C. S. P. M., Staff, A. C., Andersen, L. B., Olive, E. L., Redman, C., Sletner, L., Daskalakis, G., Macleod, M., Abdollahain, M., Ramirez, J. A., Masse, J., Audibert, F., Magnus, P. M., Jenum, A. K., Baschat, A., Ohkuchi, A., Mcauliffe, F. M., West, J., Askie, L. M., Mone, F., Farrar, D., Zimmerman, P. A., Smits, L. J. M., Riddell, C., Kingdom, J. C., van de Post, J., Illanes, S. E., Holzman, C., van Kuijk, S. M. J., Carbillon, L., Villa, P. M., Eskild, A., Chappell, L., Prefumo, F., Velauthar, L., Seed, P., van Oostwaard, M., Verlohren, S., Poston, L., Ferrazzi, E., Vinter, C. A., Nagata, C., Brown, M., Vollebregt, K. C., Takeda, S., Langenveld, J., Widmer, M., Saito, S., Haavaldsen, C., Carroli, G., Olsen, J., Wolf, H., Zavaleta, N., Eisensee, I., Vergani, P., Lumbiganon, P., Makrides, M., Facchinetti, F., Sequeira, E., Gibson, R., Ferrazzani, S., Frusca, T., Norman, J. E., Figueiro, E. A., Lapaire, O., Laivuori, H., Lykke, J. A., Conde-Agudelo, A., Galindo, A., Mbah, A., Betran, A. P., Herraiz, I., Trogstad, L., Smith, G. G. S., Steegers, E. A. P., Salim, R., Huang, T., Adank, A., Zhang, J., Meschino, W. S., Browne, J. L., Allen, R. E., Costa, F. D. S., Klipstein-Grobusch Browne, K., Crowther, C. A., Jorgensen, J. S., Forest, J. -C., Rumbold, A. R., Mol, B. W., Giguere, Y., Kenny, L. C., Ganzevoort, W., Odibo, A. O., Myers, J., Yeo, S. A., Goffinet, F., Mccowan, L., Pajkrt, E., Teede, H. J., Haddad, B. G., Dekker, G., Kleinrouweler, E. C., Lecarpentier, E., Roberts, C. T., Groen, H., Skrastad, R. B., Heinonen, S., Eero, K., Anggraini, D., Souka, A., Cecatti, J. G., Monterio, I., Pillalis, A., Souza, R., Hawkins, L. A., Gabbay-Benziv, R., Crovetto, F., Figuera, F., Jorgensen, L., Dodds, J., Patel, M., Aviram, A., Papageorghiou, A., Khan, K.
Přispěvatelé: Clinicum, HUS Gynecology and Obstetrics, Department of Obstetrics and Gynecology, HUS Children and Adolescents, Lastentautien yksikkö, Children's Hospital, Allotey, J, Whittle, R, Snell, K, Smuk, M, Townsend, R, von Dadelszen, P, Heazell, A, Magee, L, Smith, G, Sandall, J, Thilaganathan, B, Zamora, J, Riley, R, Khalil, A, Thangaratinam, S, Coomarasamy, A, Kwong, A, Savitri, A, Salvesen, K, Bhattacharya, S, Uiterwaal, C, Staff, A, Andersen, L, Olive, E, Redman, C, Sletner, L, Daskalakis, G, Macleod, M, Abdollahain, M, Ramirez, J, Masse, J, Audibert, F, Magnus, P, Jenum, A, Baschat, A, Ohkuchi, A, Mcauliffe, F, West, J, Askie, L, Mone, F, Farrar, D, Zimmerman, P, Smits, L, Riddell, C, Kingdom, J, van de Post, J, Illanes, S, Holzman, C, van Kuijk, S, Carbillon, L, Villa, P, Eskild, A, Chappell, L, Prefumo, F, Velauthar, L, Seed, P, van Oostwaard, M, Verlohren, S, Poston, L, Ferrazzi, E, Vinter, C, Nagata, C, Brown, M, Vollebregt, K, Takeda, S, Langenveld, J, Widmer, M, Saito, S, Haavaldsen, C, Carroli, G, Olsen, J, Wolf, H, Zavaleta, N, Eisensee, I, Vergani, P, Lumbiganon, P, Makrides, M, Facchinetti, F, Sequeira, E, Gibson, R, Ferrazzani, S, Frusca, T, Norman, J, Figueiro, E, Lapaire, O, Laivuori, H, Lykke, J, Conde-Agudelo, A, Galindo, A, Mbah, A, Betran, A, Herraiz, I, Trogstad, L, Steegers, E, Salim, R, Huang, T, Adank, A, Zhang, J, Meschino, W, Browne, J, Allen, R, Costa, F, Klipstein-Grobusch Browne, K, Crowther, C, Jorgensen, J, Forest, J, Rumbold, A, Mol, B, Giguere, Y, Kenny, L, Ganzevoort, W, Odibo, A, Myers, J, Yeo, S, Goffinet, F, Mccowan, L, Pajkrt, E, Teede, H, Haddad, B, Dekker, G, Kleinrouweler, E, Lecarpentier, E, Roberts, C, Groen, H, Skrastad, R, Heinonen, S, Eero, K, Anggraini, D, Souka, A, Cecatti, J, Monterio, I, Pillalis, A, Souza, R, Hawkins, L, Gabbay-Benziv, R, Crovetto, F, Figuera, F, Jorgensen, L, Dodds, J, Patel, M, Aviram, A, Papageorghiou, A, Khan, K, Tampere University, Obstetrics and Gynaecology, APH - Quality of Care, Amsterdam Reproduction & Development (AR&D), APH - Personalized Medicine, APH - Digital Health, Obstetrics and gynaecology
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Calibration (statistics)
Perinatal Death
Overfitting
Cohort Studies
Fetal Development
0302 clinical medicine
Discriminative model
3123 Gynaecology and paediatrics
Models
Pregnancy
GROWTH RESTRICTION
Statistics
Medicine
Prenatal
030212 general & internal medicine
Ultrasonography
RISK
030219 obstetrics & reproductive medicine
PRETERM
Radiological and Ultrasound Technology
LOW-DOSE ASPIRIN
DIAGNOSIS TRIPOD
Obstetrics and Gynecology
General Medicine
Statistical
Stillbirth
Prognosis
Pregnancy Complication
external validation
individual participant data
intrauterine death
prediction model
stillbirth
Female
Humans
Infant
Newborn

Models
Statistical

Pregnancy Complications
Regression Analysis
Risk Assessment
Ultrasonography
Prenatal

3. Good health
PREECLAMPSIA
Meta-analysis
Human
Cohort study
Prognosi
MEDLINE
Regression Analysi
WEEKS GESTATION
03 medical and health sciences
VELOCIMETRY
Radiology
Nuclear Medicine and imaging

RECURRENCE
business.industry
Infant
Newborn
R1
HYPERTENSIVE DISORDERS
Reproductive Medicine
Sample size determination
Cohort Studie
RG
business
RA
Predictive modelling
Zdroj: IPPIC Collaborative Network & Mone, F 2021, ' External validation of prognostic models to predict stillbirth using the International Prediction of Pregnancy Complications (IPPIC) Network database: an individual participant data meta-analysis ', Ultrasound in Obstetrics and Gynecology . https://doi.org/10.1002/uog.23757
Ultrasound in obstetrics & gynecology, 59(2), 209-219. John Wiley and Sons Ltd
the IPPIC Collaborative Network 2022, ' External validation of prognostic models to predict stillbirth using International Prediction of Pregnancy Complications (IPPIC) Network database : individual participant data meta-analysis ', Ultrasound in Obstetrics and Gynecology, vol. 59, no. 2, pp. 209-219 . https://doi.org/10.1002/uog.23757
Ultrasound in Obstetrics and Gynecology, 59(2), 209-219. John Wiley and Sons Ltd
IPPIC Collaborative Network 2021, ' External validation of prognostic models to predict stillbirth using the International Prediction of Pregnancy Complications (IPPIC) Network database : an individual participant data meta-analysis ', Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology . https://doi.org/10.1002/uog.23757
2022, ' External validation of prognostic models to predict stillbirth using International Prediction of Pregnancy Complications (IPPIC) Network database : individual participant data meta-analysis ', Ultrasound in Obstetrics and Gynecology, vol. 59, no. 2, pp. 209-219 . https://doi.org/10.1002/uog.23757
ISSN: 1469-0705
0960-7692
DOI: 10.1002/uog.23757
Popis: Objective Stillbirth is a potentially preventable complication of pregnancy. Identifying women at high risk of stillbirth can guide decisions on the need for closer surveillance and timing of delivery in order to prevent fetal death. Prognostic models have been developed to predict the risk of stillbirth, but none has yet been validated externally. In this study, we externally validated published prediction models for stillbirth using individual participant data (IPD) meta-analysis to assess their predictive performance. Methods MEDLINE, EMBASE, DH-DATA and AMED databases were searched from inception to December 2020 to identify studies reporting stillbirth prediction models. Studies that developed or updated prediction models for stillbirth for use at any time during pregnancy were included. IPD from cohorts within the International Prediction of Pregnancy Complications (IPPIC) Network were used to validate externally the identified prediction models whose individual variables were available in the IPD. The risk of bias of the models and cohorts was assessed using the Prediction study Risk Of Bias ASsessment Tool (PROBAST). The discriminative performance of the models was evaluated using the C-statistic, and calibration was assessed using calibration plots, calibration slope and calibration-in-the-large. Performance measures were estimated separately in each cohort, as well as summarized across cohorts using random-effects meta-analysis. Clinical utility was assessed using net benefit. Results Seventeen studies reporting the development of 40 prognostic models for stillbirth were identified. None of the models had been previously validated externally, and the full model equation was reported for only one-fifth (20%, 8/40) of the models. External validation was possible for three of these models, using IPD from 19 cohorts (491 201 pregnant women) within the IPPIC Network database. Based on evaluation of the model development studies, all three models had an overall high risk of bias, according to PROBAST. In the IPD meta-analysis, the models had summary C-statistics ranging from 0.53 to 0.65 and summary calibration slopes ranging from 0.40 to 0.88, with risk predictions that were generally too extreme compared with the observed risks. The models had little to no clinical utility, as assessed by net benefit. However, there remained uncertainty in the performance of some models due to small available sample sizes. Conclusions The three validated stillbirth prediction models showed generally poor and uncertain predictive performance in new data, with limited evidence to support their clinical application. The findings suggest methodological shortcomings in their development, including overfitting. Further research is needed to further validate these and other models, identify stronger prognostic factors and develop more robust prediction models. (c) 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Databáze: OpenAIRE