A general framework for a class of non-linear approximations with applications to image restoration

Autor: Antonio Falcó, Vicente F. Candela, Pantaleón D. Romero
Přispěvatelé: UCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas, Producción Científica UCH 2018
Rok vydání: 2018
Předmět:
Zdroj: CEU Repositorio Institucional
Fundación Universitaria San Pablo CEU (FUSPCEU)
ISSN: 0377-0427
DOI: 10.1016/j.cam.2017.03.008
Popis: Este artículo se encuentra disponible en la página web de la revista en la siguiente URL: https://www.sciencedirect.com/science/article/abs/pii/S0377042717301188 Este es el pre-print del siguiente artículo: Candela, V., Falcó, A. & Romero, PD. (2018). A general framework for a class of non-linear approximations with applications to image restoration. Journal of Computational and Applied Mathematics, vol. 330 (mar.), pp. 982-994, que se ha publicado de forma definitiva en https://doi.org/10.1016/j.cam.2017.03.008 This is the pre-peer reviewed version of the following article: Candela, V., Falcó, A. & Romero, PD. (2018). A general framework for a class of non-linear approximations with applications to image restoration. Journal of Computational and Applied Mathematics, vol. 330 (mar.), pp. 982-994, which has been published in final form at https://doi.org/10.1016/j.cam.2017.03.008 In this paper, we establish sufficient conditions for the existence of optimal nonlinear approximations to a linear subspace generated by a given weakly-closed (non-convex) cone of a Hilbert space. Most non-linear problems have difficulties to implement good projection-based algorithms due to the fact that the subsets, where we would like to project the functions, do not have the necessary geometric properties to use the classical existence results (such as convexity, for instance). The theoretical results given here overcome some of these difficulties. To see this we apply them to a fractional model for image deconvolution. In particular, we reformulate and prove the convergence of a computational algorithm proposed in a previous paper by some of the authors. Finally, some examples are given. Preprint
Databáze: OpenAIRE