A new conjecture concerning the Diophantine equation $x^2 + b^y = c^z$

Autor: Zhenfu Cao, Zhong Li, Xiaolei Dong
Rok vydání: 2002
Předmět:
Zdroj: Proc. Japan Acad. Ser. A Math. Sci. 78, no. 10 (2002), 199-202
ISSN: 0386-2194
DOI: 10.3792/pjaa.78.199
Popis: In this paper, using a recent result of Bilu, Hanrot and Voutier on primitive divisors, we prove that if $a = |V_r|$, $b = |U_r|$, $c = m^2 + 1$, and $b \equiv 3 \pmod{4}$ is a prime power, then the Diophantine equation $x^2 + b^y = c^z$ has only the positive integer solution $(x,y,z) = (a,2,r)$, where $r > 1$ is an odd integer, $m \in \mathbf{N}$ with $2 \mid m$ and the integers $U_r$, $V_r$ satisfy $(m + \sqrt{-1} )^r = V_r + U_r \sqrt{-1}$.
Databáze: OpenAIRE