Phonon-Assisted Intervalley Scattering Determines Ultrafast Exciton Dynamics in MoSe 2 Bilayers

Autor: Ermin Malic, Alexander Achstein, Andreas Knorr, Kevin Sampson, Sophia Helmrich, Kai Hao, Malte Selig, Xiaoqin Li, Di Huang, Kha Tran, Ulrike Woggon, Carter Young, Nina Owschimikow
Rok vydání: 2021
Předmět:
Zdroj: Physical Review Letters
ISSN: 0031-9007
0027-1349
DOI: 10.1103/physrevlett.127.157403
Popis: While valleys (energy extrema) are present in all band structures of solids, their preeminent role in determining exciton resonances and dynamics in atomically thin transition metal dichalcogenides (TMDC) is unique. Using two-dimensional coherent electronic spectroscopy, we find that exciton decoherence occurs on a much faster time scale in MoSe$_2$ bilayers than that in the monolayers. We further identify two population relaxation channels in the bilayer, a coherent and an incoherent one. Our microscopic model reveals that phonon-emission processes facilitate scattering events from the $K$ valley to other lower energy $\Gamma$ and $\Lambda$ valleys in the bilayer. Our combined experimental and theoretical studies unequivocally establish different microscopic mechanisms that determine exciton quantum dynamics in TMDC monolayers and bilayers. Understanding exciton quantum dynamics provides critical guidance to manipulation of spin/valley degrees of freedom in TMDC bilayers.
Comment: 6 pages, 4 figures
Databáze: OpenAIRE