Urinary bladder matrix does not improve tenogenesis in an in vitro equine model
Autor: | Anne E. C. Nichols, Linda A. Dahlgren, Sarah M. Khatibzadeh, Stephen R. Werre, Bruno C. Menarim |
---|---|
Rok vydání: | 2019 |
Předmět: |
Male
Swine Decorin Urinary Bladder 0206 medical engineering 02 engineering and technology Matrix metalloproteinase Tendons Extracellular matrix 03 medical and health sciences 0302 clinical medicine Tissue engineering Tendon Injuries medicine Animals Regeneration Orthopedics and Sports Medicine Horses Cartilage oligomeric matrix protein 030203 arthritis & rheumatology Tissue Scaffolds biology Chemistry Scleraxis Hydrogels 020601 biomedical engineering Extracellular Matrix Rats Tendon Cell biology medicine.anatomical_structure Self-healing hydrogels biology.protein Female |
Zdroj: | Journal of Orthopaedic Research. |
ISSN: | 1554-527X 0736-0266 |
Popis: | Extracellular matrix (ECM) is responsible for tendon strength and elasticity. Healed tendon ECM lacks structural integrity, leading to reinjury. Porcine urinary bladder matrix (UBM) provides a scaffold and source of bioactive proteins to improve tissue healing, but has received limited attention for treating tendon injuries. The objective of this study was to evaluate the ability of UBM to induce matrix organization and tenogenesis using a novel in vitro model. We hypothesized that addition of UBM to tendon ECM hydrogels would improve matrix organization and cell differentiation. Hydrogels seeded with bone marrow cells (n = 6 adult horses) were cast using rat tail tendon ECM ± UBM, fixed under static tension and harvested at 7 and 21 days for construct contraction, cell viability, histology, biochemistry, and gene expression. By day 7, UBM constructs contracted significantly from baseline, whereas control constructs did not. Both control and UBM constructs contracted significantly by day 21. In both groups, cells remained viable over time and changed from round and randomly oriented to elongated along lines of tension with visible compaction of the ECM. There were no differences over time or between treatments for nuclear aspect ratio, DNA, or glycosaminoglycan content. Decorin, matrix metalloproteinase 13, and scleraxis expression increased significantly over time, but not in response to UBM treatment. Mohawk expression was constant over time. Cartilage oligomeric matrix protein expression decreased over time in both groups. Using a novel ECM hydrogel model, substantial matrix organization and cell differentiation occurred; however, the addition of UBM failed to induce greater matrix organization than tendon ECM alone. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1848-1859, 2019. |
Databáze: | OpenAIRE |
Externí odkaz: |