Bases of minimal vectors in tame lattices

Autor: Guillermo Mantilla-Soler, Mohamed Taoufiq Damir
Rok vydání: 2020
Předmět:
DOI: 10.48550/arxiv.2006.16794
Popis: Motivated by the behavior of the trace pairing over tame cyclic number fields, we introduce the notion of tame lattices. Given an arbitrary non-trivial lattice $\mathcal{L}$ we construct a parametric family of full-rank sub-lattices $\{\mathcal{L}_{\alpha}\}$ of $\mathcal{L}$ such that whenever $\mathcal{L}$ is tame each $\mathcal{L}_{\alpha}$ has a basis of minimal vectors. Furthermore, for each $\mathcal{L}_{\alpha}$ in the family a basis of minimal vectors is explicitly constructed.
Databáze: OpenAIRE