Chiral magnetization of non-Abelian vacuum: a lattice study

Autor: M.I. Polikarpov, E. V. Luschevskaya, M. N. Chernodub, Pavel Buividovich
Přispěvatelé: Institute of Theoretical and Experimental Physics [Moscow] (ITEP), National Research Center 'Kurchatov Institute' (NRC KI), Laboratoire de Mathématiques et Physique Théorique (LMPT), Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), Université de Tours-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2009
Předmět:
High Energy Physics - Theory
Nuclear and High Energy Physics
High Energy Physics::Lattice
FOS: Physical sciences
01 natural sciences
Magnetization
High Energy Physics - Lattice
High Energy Physics - Phenomenology (hep-ph)
Lattice gauge theory
0103 physical sciences
lattice gauge theory
11.30.Rd
12.38.Gc
13.40.-f

010306 general physics
Chiral anomaly
Quantum chromodynamics
Physics
Condensed matter physics
010308 nuclear & particles physics
[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
High Energy Physics - Lattice (hep-lat)
chiral symmetry breaking
Fermion
Magnetic field
High Energy Physics - Phenomenology
High Energy Physics - Theory (hep-th)
Quantum electrodynamics
[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]
strong magnetic fields
Chiral symmetry breaking
Orbital magnetization
Zdroj: Nuclear Physics B
Nuclear Physics B, Elsevier, 2009, 826 (1-2), pp.313. ⟨10.1016/j.nuclphysb.2009.10.008⟩
ISSN: 0550-3213
DOI: 10.1016/j.nuclphysb.2009.10.008⟩
Popis: The chiral magnetization properties of cold and hot vacua are studied using quenched simulations in lattice Yang-Mills theory. In weak external magnetic fields the magnetization is proportional to the first power of the magnetic field. We evaluate numerically the coefficient of the proportionality (the chiral susceptibility) using near-zero eigenmodes of overlap fermions. We found that the product of the chiral susceptibility and the chiral condensate equals to 46(3) MeV. This value is very close to the phenomenological value of 50 MeV. In strong fields the magnetization is a nonlinear function of the applied magnetic field. We find that the nonlinear features of the magnetization are well described by an inverse tangent function. The magnetization is weakly sensitive to temperature in the confinement phase.
Comment: 8 pages, 3 figures, uses elsarticle style; revision: factorization checked numerically, references added, published version
Databáze: OpenAIRE