Building a mechanistic understanding of predation with GPS-based movement data
Autor: | Mark Hebblewhite, Evelyn H. Merrill, Nathan F. Webb, Håkan Sand, Jacqueline L. Frair, Heather M. McPhee, Petter Wabakken, Barbara Zimmermann |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
Geographic information system
carnivores Carnivora Population Dynamics Variation (game tree) Biology Machine learning computer.software_genre General Biochemistry Genetics and Molecular Biology Predation Predatory behavior functional response VDP::Mathematics and natural science: 400::Zoology and botany: 480 Animals Movement (clockwork) handling time Models Statistical business.industry Ecology Statistical model Articles kill rates Predatory Behavior Geographic Information Systems Global Positioning System Seasons Artificial intelligence predation movement General Agricultural and Biological Sciences business computer |
Popis: | Artikkelen er en postprint av artikkelen utgitt i Philosophical Transactions of the Royal Society of London, Biological Sciences. Den publiserte versjonen av artikkelen kan du finne her: http://rstb.royalsocietypublishing.org/content/365/1550/2279.abstract Quantifying kill rates and sources of variation in kill rates remains an important challenge in linking predators to their prey. We address current approaches to using GPS-based movement data for quantifying key predation components of large carnivores. We review approaches to identify kill sites from GPS-movement data as a means to estimate kill rates and address advantages of using GPS-based data over past approaches. Despite considerable progress, modeling the probability that a cluster of GPS points is a kill site is no substitute for field visits but can guide our field efforts. Once kill sites are identified, time spent at a kill site (handling time) and time between kills (killing time) can be determined. We show how statistical models can be used to investigate the influence of factors such as animal characteristics (e.g., age, sex, group size) and landscape features on either handling time or killing efficiency. If we know the prey densities along paths to a kill, we can quantify the “attack success” parameter in functional response models directly. Problems remain in incorporating the behavioural complexity derived from GPS movement paths into functional response models, particularly in multi-prey systems, but we believe that exploring the details of GPS-movement data has put us on the right path. |
Databáze: | OpenAIRE |
Externí odkaz: |