Collective modes in simple melts: Transition from soft spheres to the hard sphere limit
Autor: | Sergey Khrapak, Boris Klumov, Lénaïc Couëdel |
---|---|
Přispěvatelé: | Theory, Max-Planck-Institut für Extraterrestrische Physik (MPE), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Science
Chemical physics FOS: Physical sciences Condensed Matter - Soft Condensed Matter Article Plasma physics Physics - Chemical Physics Structure of solids and liquids Gruppe Komplexe Plasmen Chemical Physics (physics.chem-ph) collective modes in fluids [PHYS]Physics [physics] Condensed Matter - Materials Science Institut für Materialphysik im Weltraum collective motion in simple fluids Fluid Dynamics (physics.flu-dyn) Materials Science (cond-mat.mtrl-sci) Physics - Fluid Dynamics Physics - Plasma Physics Plasma Physics (physics.plasm-ph) melts Medicine Soft Condensed Matter (cond-mat.soft) acoustic waves in fluids |
Zdroj: | Scientific Reports Scientific Reports, Nature Publishing Group, 2017, 7, ⟨10.1038/s41598-017-08429-5⟩ Scientific Reports, 2017, 7, ⟨10.1038/s41598-017-08429-5⟩ Scientific Reports, Vol 7, Iss 1, Pp 1-9 (2017) |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-017-08429-5⟩ |
Popis: | We study collective modes in a classical system of particles with repulsive inverse-power-law (IPL) interactions in the fluid phase, near the fluid-solid coexistence (IPL melts). The IPL exponent is varied from $n=10$ to $n=100$ to mimic the transition from moderately soft to hard-sphere-like interactions. We compare the longitudinal dispersion relations obtained using molecular dynamic (MD) simulations with those calculated using the quasi-crystalline approximation (QCA) and find that this simple theoretical approach becomes grossly inaccurate for $n\gtrsim 20$. Similarly, conventional expressions for high-frequency (instantaneous) elastic moduli, predicting their divergence as $n$ increases, are meaningless in this regime. Relations of the longitudinal and transverse elastic velocities of the QCA model to the adiabatic sound velocity, measured in MD simulations, are discussed for the regime where QCA is applicable. Two potentially useful freezing indicators for classical particle systems with steep repulsive interactions are discussed. Full text access to the paper using the link: http://rdcu.be/uVRO |
Databáze: | OpenAIRE |
Externí odkaz: |