Residual Error Estimators for Coulomb Friction
Autor: | Vanessa Lleras, Patrick Hild |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB), Université de Bourgogne (UB)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), ANR-05-JCJC-0182,INEQMATHSIMU,Inéquations en mécanique des solides et des fluides : analyse mathématique et simulation numérique.(2005) |
Rok vydání: | 2009 |
Předmět: |
a posteriori error estimates
Numerical Analysis Applied Mathematics Numerical analysis Estimator 010103 numerical & computational mathematics Residual 01 natural sciences Upper and lower bounds Finite element method 010101 applied mathematics residuals Computational Mathematics Coulomb friction 65N30 74M15 Calculus Coulomb Applied mathematics A priori and a posteriori Uniqueness 0101 mathematics [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] Mathematics |
Zdroj: | SIAM Journal on Numerical Analysis SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2009, 47 (5), pp.3550-3583. ⟨10.1137/070711554⟩ |
ISSN: | 1095-7170 0036-1429 |
DOI: | 10.1137/070711554 |
Popis: | International audience; This paper is concerned with residual error estimators for finite element approximations of Coulomb frictional contact problems. A recent uniqueness result by Renard in [SIAM J. Math. Anal., 38 (2006), pp. 452–467] for the continuous problem allows us to perform an a posteriori error analysis. We propose, study, and implement numerically two residual error estimators associated with two finite element discretizations. In both cases the estimators permit us to obtain upper and lower bounds of the discretization error. |
Databáze: | OpenAIRE |
Externí odkaz: |