Safety and immunogenicity of a Zika purified inactivated virus vaccine given via standard, accelerated, or shortened schedules: a single-centre, double-blind, sequential-group, randomised, placebo-controlled, phase 1 trial
Autor: | Jessica L Ansel, Dan H. Barouch, Kayvon Modjarrad, Katherine E. Yanosick, Lauren Peter, Edward T. Moseley, Rafael De La Barrera, Tatenda Makoni, Michael S. Seaman, Peter Dawson, Rachel Fogel, Joseph P. Nkolola, Kathryn E. Stephenson, Stephen R. Walsh, Andrew J. Hale, Diane G. Kanjilal, Kate Jaegle, Nelson L. Michael, Stephen J. Thomas, Connor Bradshaw, Abishek Chandrashekar, Jason Thompson, Kenneth H. Eckels, Erica N. Borducchi, Anna Tyler, Chen S. Tan |
---|---|
Rok vydání: | 2020 |
Předmět: |
Adult
Male 0301 basic medicine medicine.medical_specialty Adolescent Population Placebo Article Young Adult 03 medical and health sciences Immunogenicity Vaccine 0302 clinical medicine Double-Blind Method Internal medicine medicine Clinical endpoint Humans 030212 general & internal medicine Dosing Epidemics education Adverse effect Immunization Schedule education.field_of_study Zika Virus Infection business.industry Immunogenicity Viral Vaccines Zika Virus Middle Aged Vaccination Regimen 030104 developmental biology Infectious Diseases Vaccines Inactivated Female business |
Zdroj: | Lancet Infect Dis |
ISSN: | 1473-3099 |
DOI: | 10.1016/s1473-3099(20)30085-2 |
Popis: | Summary Background The development of an effective vaccine against Zika virus remains a public health priority. A Zika purified inactivated virus (ZPIV) vaccine candidate has been shown to protect animals against Zika virus challenge and to be well tolerated and immunogenic in humans up to 8 weeks of follow-up. We aimed to assess the safety and immunogenicity of ZPIV in humans up to 52 weeks of follow-up when given via standard or accelerated vaccination schedules. Methods We did a single-centre, double-blind, randomised controlled, phase 1 trial in healthy adults aged 18–50 years with no known history of flavivirus vaccination or infection at Beth Israel Deaconess Medical Center in Boston, MA, USA. Participants were sequentially enrolled into one of three groups: ZPIV given at weeks 0 and 4 (standard regimen), weeks 0 and 2 (accelerated regimen), or week 0 alone (single-dose regimen). Within each group, participants were randomly assigned using a computer-generated randomisation schedule to receive an intramuscular injection of 5 μg ZPIV or saline placebo, in a ratio of 5:1. The sponsor, clinical staff, investigators, participants, and laboratory personnel were masked to treatment assignment. The primary endpoint was safety up to day 364 after final dose administration, and secondary endpoints were proportion of participants with positive humoral immune responses (50% microneutralisation titre [MN50] ≥100) and geometric mean MN50 at observed peak response (ie, the highest neutralising antibody level observed for an individual participant across all timepoints) and week 28. All participants who received at least one dose of ZPIV or placebo were included in the safety population; the analysis of immunogenicity at observed peak included all participants who received at least one dose of ZPIV or placebo and had any adverse events or immunogenicity data after dosing. The week 28 immunogenicity analysis population consisted of all participants who received ZPIV or placebo and had immunogenicity data available at week 28. This trial is registered with ClinicalTrials.gov , NCT02937233 . Findings Between Dec 8, 2016, and May 17, 2017, 12 participants were enrolled into each group and then randomly assigned to vaccine (n=10) or placebo (n=2). There were no serious or grade 3 treatment-related adverse events. The most common reactions among the 30 participants who received the vaccine were injection-site pain (24 [80%]), fatigue (16 [53%]), and headache (14 [46%]). A positive response at observed peak titre was detected in all participants who received ZPIV via the standard regimen, in eight (80%) of ten participants who received ZPIV via the accelerated regimen, and in none of the ten participants who received ZPIV via the single-dose regimen. The geometric mean of all individual participants' observed peak values was 1153·9 (95% CI 455·2–2925·2) in the standard regimen group, 517·7 (142·9–1875·6) in the accelerated regimen group, and 6·3 (3·7–10·8) in the single-dose regimen group. At week 28, a positive response was observed in one (13%) of eight participants who received ZPIV via the standard regimen and in no participant who received ZPIV via the accelerated (n=7) or single-dose (n=10) regimens. The geomteric mean titre (GMT) at this timepoint was 13·9 (95% CI 3·5–55·1) in the standard regimen group and 6·9 (4·0–11·9) in the accelerated regimen group; antibody titres were undetectable at 28 weeks in participants who received ZPIV via the single-dose regimen. For all vaccine schedules, GMTs peaked 2 weeks after the final vaccination and declined to less than 100 by study week 16. There was no difference in observed peak GMTs between the standard 4-week and the accelerated 2-week boosting regimens (p=0·4494). Interpretation ZPIV was safe and well tolerated in humans up to 52 weeks of follow-up. ZPIV immunogenicity required two doses and was not durable. Additional studies of ZPIV to optimise dosing schedules are ongoing. Funding The Henry M Jackson Foundation for the Advancement of Military Medicine. |
Databáze: | OpenAIRE |
Externí odkaz: |