Eugenol derivatives as potential anti-oxidants: is phenolic hydroxyl necessary to obtain an effect?
Autor: | Filipe S. P. Dutra, Claiton L. Lencina, Francieli M. Stefanello, Pathise Souto Oliveira, Claudio M. P. Pereira, Alethea Gatto Barschak, Thiely Jacobsen Fernandes, Marilia D. Farias, Simone Quintana de Oliveira |
---|---|
Rok vydání: | 2013 |
Předmět: |
Male
DPPH Syzygium Pharmaceutical Science Alkylation Antioxidants Protein Carbonylation Acylation Lipid peroxidation chemistry.chemical_compound Picrates Eugenol TBARS Animals Organic chemistry Benzothiazoles Sulfhydryl Compounds Rats Wistar Cerebral Cortex Pharmacology chemistry.chemical_classification ABTS Plant Extracts Biphenyl Compounds Oxidative Stress Liver chemistry Thiol Lipid Peroxidation Sulfonic Acids |
Zdroj: | Journal of Pharmacy and Pharmacology. 66:733-746 |
ISSN: | 2042-7158 0022-3573 |
DOI: | 10.1111/jphp.12197 |
Popis: | Objectives Eugenol, obtained from clove oil (Eugenia caryophyllata), possess several biological activities. It is anti-inflammatory, analgesic, anaesthesic, antipyretic, antiplatelet, anti-anaphylactic, anticonvulsant, anti-oxidant, antibacterial, antidepressant, antifungal and antiviral. The anti-oxidant activity of eugenol have already been proven. From this perspective testing, a series of planned structural derivatives of eugenol were screened to perform structural optimization and consequent increase of the potency of these biological activities. Methods In an attempt to increase structural variability, 16 compounds were synthesized by acylation and alkylation of the phenolic hydroxyl group. Anti-oxidant activity capacity was based on the capture of DPPH radical (2,2-diphenyl-1-picryl-hydrazyl), ABTS radical 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), measure of TBARS (thiobarbituric acid-reactive species), total sulfhydryl and carbonyl content (eugenol derivatives final concentrations range from 50 to 200 μm). Key findings Four derivatives presented an efficient concentration to decrease 50% of the DPPH radical (EC50) < 100 μm, which has a good potential as a free-radical scavenger. Three of these compounds also showed reduction of ABTS radical. Eugenol derivatives presenting alkyl or aryl (alkylic or arylic) groups substituting hydroxyl 1 of eugenol were effective in reducing lipid peroxidation, protein oxidative damage by carbonyl formation and increase total thiol content in cerebral cortex homogenates. In liver, the eugenol derivatives evaluated had no effect. Conclusions Our results suggest that these molecules are promising anti-oxidants agents. |
Databáze: | OpenAIRE |
Externí odkaz: |