Planetary perturbations on Mercury's libration in longitude

Autor: Anne Lemaitre, Julien Dufey, Nicolas Rambaux
Přispěvatelé: Department of Mathematics, University of Namur, Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Astronomie et systèmes dynamiques (ASD), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Jazyk: angličtina
Rok vydání: 2008
Předmět:
Zdroj: Celestial Mechanics and Dynamical Astronomy
Celestial Mechanics and Dynamical Astronomy, 2008, 101, pp.141-157. ⟨10.1007/s10569-008-9143-8⟩
ISSN: 0923-2958
1572-9478
DOI: 10.1007/s10569-008-9143-8⟩
Popis: International audience; Two space missions dedicated to Mercury (MESSENGER and BepiColombo) aim at understanding its rotation and confirming the existence of a liquid core. This double challenge requires much more accurate models for the spin-orbit resonant rotation of Mercury. The purpose of this paper is to introduce planetary perturbations on Mercury's rotation using an analytical method and to analyse the influence of the perturbations on the libration in longitude. Applying a perturbation theory based on the Lie triangle, we were able to re-introduce short periodic terms into the averaged Hamiltonian and to compute the evolution of the rotational variables. The perturbations on Mercury's forced libration in longitude mainly come from the orbital motion of Mercury (with an amplitude around 41 arcsec that depends on the momenta of inertia). It is completed by various effects from Jupiter (11.86 and 5.93 year-periods), Venus (with a 5.66 year-period), Saturn (14.73 year-period), and the Earth (6.58 year-period). The amplitudes of the oscillations due to Jupiter and Venus are approximately 33% and 10% of those from the orbital motion of Mercury and the amplitudes of the oscillations due to Saturn and the Earth are approximately 3% and 2%. We compare the analytical results with the solution obtained from the spin-orbit numerical model SONYR.
Databáze: OpenAIRE