StemBond hydrogels control the mechanical microenvironment for pluripotent stem cells
Autor: | Bao Xiu Tan, Céline Labouesse, Carla Mulas, Alexander K. Winkel, Moritz Hofer, Christophe M. Verstreken, Chibeza C. Agley, Kevin J. Chalut, José C. R. Silva, Giuliano Giuseppe Stirparo, Paul Bertone, Kristian Franze, William Mansfield, Hannah T. Stuart |
---|---|
Přispěvatelé: | Labouesse, Céline [0000-0002-9791-898X], Hofer, Moritz [0000-0002-9714-0143], Stirparo, Giuliano G. [0000-0002-5911-8682], Verstreken, Christophe M. [0000-0001-9038-1094], Mulas, Carla [0000-0002-9492-6482], Franze, Kristian [0000-0002-8425-7297], Silva, José C. R. [0000-0001-5487-1117], Chalut, Kevin J. [0000-0001-6200-9690], Apollo - University of Cambridge Repository, Stirparo, Giuliano G [0000-0002-5911-8682], Verstreken, Christophe M [0000-0001-9038-1094], Silva, José CR [0000-0001-5487-1117], Chalut, Kevin J [0000-0001-6200-9690], Chalut, Kevin [0000-0001-6200-9690] |
Rok vydání: | 2021 |
Předmět: |
Pluripotent Stem Cells
Embryonic stem cells 631/61/54/2295 Science Cell Culture Techniques General Physics and Astronomy 631/61/2320 macromolecular substances Matrix (biology) 13 Mechanotransduction Cellular 14 Stem-cell biotechnology General Biochemistry Genetics and Molecular Biology 38 38/91 Extracellular matrix 631/532/2435 82/80 Mice 631/532/2117 Stem cell fate specification 13/100 14/3 Cell Adhesion 38/88 Animals Humans 14/19 Induced pluripotent stem cell Cells Cultured Multidisciplinary Chemistry technology industry and agriculture article Reprogramming Cell Differentiation Hydrogels General Chemistry Embryonic stem cell Cell biology Biomechanical Phenomena Extracellular Matrix Self-healing hydrogels 14/63 Biomaterials - cells Stem cell |
Zdroj: | Nature Communications, Vol 12, Iss 1, Pp 1-17 (2021) Nature Communications |
Popis: | Funder: Medical Research Council (UK) Career Development Award (G1100312/1) Funder: Medical Research Council (UK) MR/M011089/1 Wellcome Trust-Medical Research Council core funding to the Wellcome-MRC Cambridge Stem Cell Institute Studies of mechanical signalling are typically performed by comparing cells cultured on soft and stiff hydrogel-based substrates. However, it is challenging to independently and robustly control both substrate stiffness and extracellular matrix tethering to substrates, making matrix tethering a potentially confounding variable in mechanical signalling investigations. Moreover, unstable matrix tethering can lead to poor cell attachment and weak engagement of cell adhesions. To address this, we developed StemBond hydrogels, a hydrogel in which matrix tethering is robust and can be varied independently of stiffness. We validate StemBond hydrogels by showing that they provide an optimal system for culturing mouse and human pluripotent stem cells. We further show how soft StemBond hydrogels modulate stem cell function, partly through stiffness-sensitive ERK signalling. Our findings underline how substrate mechanics impact mechanosensitive signalling pathways regulating self-renewal and differentiation, indicating that optimising the complete mechanical microenvironment will offer greater control over stem cell fate specification. |
Databáze: | OpenAIRE |
Externí odkaz: |