Density-controlled growth of vertical InP nanowires on Si(111) substrates
Autor: | Michel Gendry, Philippe Regreny, Ali Ali Jaffal, Gilles Patriarche, Nicolas Chauvin |
---|---|
Přispěvatelé: | INL - Matériaux Fonctionnels et Nanostructures (INL - MFN), Institut des Nanotechnologies de Lyon (INL), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Materials science
Silicon Nanowire Nucleation chemistry.chemical_element FOS: Physical sciences Physics::Optics Bioengineering 02 engineering and technology Applied Physics (physics.app-ph) 010402 general chemistry 01 natural sciences [SPI.MAT]Engineering Sciences [physics]/Materials Condensed Matter::Materials Science General Materials Science Electrical and Electronic Engineering [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics Spectroscopy Quantum Condensed Matter - Materials Science business.industry Mechanical Engineering Materials Science (cond-mat.mtrl-sci) Physics - Applied Physics General Chemistry 021001 nanoscience & nanotechnology Condensed Matter::Mesoscopic Systems and Quantum Hall Effect 0104 chemical sciences chemistry Mechanics of Materials Quantum dot [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] Optoelectronics 0210 nano-technology business Beam (structure) Molecular beam epitaxy |
Zdroj: | Nanotechnology Nanotechnology, Institute of Physics, 2020, 31, pp.354003. ⟨10.1088/1361-6528/ab9475⟩ |
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/ab9475⟩ |
Popis: | International audience; A procedure to achieve the density-controlled growth of gold-catalyzed InP nanowires (NWs) on (111) silicon substrates using the vapor-liquid-solid method by molecular beam epitaxy is reported. We develop an effective and mask-free method based on controlling the number and the size of the Au-In catalyst droplets in addition to the conditions for the NW nucleation. We show that the NW density can be tuned with values in the range of 18 μm-2 to < 0.1 μm-2 by the suitable choice of the In/Au catalyst beam equivalent pressure (BEP) ratio, by the phosphorous BEP and the growth temperature. The same degree of control is transferred to InAs/InP quantum dot-nanowires, taking advantage of the ultra-low density to study by micro-photoluminescence the optical properties of a single quantum dot-nanowires emitting in the telecom band monolithically grown on silicon. Optical spectroscopy at cryogenic temperature successfully confirmed the relevance of our method to excite single InAs quantum dots on the as grown sample, which opens the path for large-scale applications based on single quantum dot-nanowire devices integrated on silicon. |
Databáze: | OpenAIRE |
Externí odkaz: |