Moret-Bailly families and non-liftable schemes
Autor: | Rössler, D, Schröer, S |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
DOI: | 10.14231/ag-2022-004 |
Popis: | Generalizing the Moret-Bailly pencil of supersingular abelian surfaces to higher dimensions, we construct for each field of characteristic p>0 a smooth projective variety with trivial dualizing sheaf that does not formally lift to characteristic zero. Our approach heavily relies on local unipotent group schemes, the Beauville--Bogomolov Decomposition for K��hler manifolds with $c_1=0$, and equivariant deformation theory 31 pages, Theorem 5.1 extended to the case that \omega_Y is anti-nef, results on non-existence of formal liftings corrected by adding assumptions, Section 9 on non-existence of liftings to rings of Witt vectors added |
Databáze: | OpenAIRE |
Externí odkaz: |