A geometric approach to Mathon maximal arcs
Autor: | S. De Winter, F. De Clerck, Thomas Maes |
---|---|
Rok vydání: | 2011 |
Předmět: |
Degree (graph theory)
51E21 51E20 05B25 Prime (order theory) Hyperovals Theoretical Computer Science Combinatorics Construction method Computational Theory and Mathematics Conic section FOS: Mathematics Maximal arcs Mathematics - Combinatorics Order (group theory) Discrete Mathematics and Combinatorics Combinatorics (math.CO) Isomorphism Projective plane Conics Mathematics |
Zdroj: | Journal of Combinatorial Theory, Series A. 118(4):1196-1211 |
ISSN: | 0097-3165 |
DOI: | 10.1016/j.jcta.2010.12.004 |
Popis: | In 1969 Denniston gave a construction of maximal arcs of degree d in Desarguesian projective planes of even order q, for all d dividing q. In 2002 Mathon gave a construction method generalizing the one of Denniston. We will give a new geometric approach to these maximal arcs. This will allow us to count the number of isomorphism classes of Mathon maximal arcs of degree 8 in PG(2,2^h), h prime. Comment: 20 pages |
Databáze: | OpenAIRE |
Externí odkaz: |