Vandermonde sets and super-Vandermonde sets

Autor: Péter Sziklai, Marcella Takáts
Rok vydání: 2008
Předmět:
Zdroj: Finite Fields and Their Applications. 14(4):1056-1067
ISSN: 1071-5797
DOI: 10.1016/j.ffa.2008.06.004
Popis: Given a set T⊆GF(q), |T|=t, wT is defined as the smallest positive integer k for which ∑y∈Tyk≠0. It can be shown that wT⩽t always and wT⩽t−1 if the characteristic p divides t. T is called a Vandermonde set if wT⩾t−1 and a super-Vandermonde set if wT=t. This (extremal) algebraic property is interesting for its own right, but the original motivation comes from finite geometries. In this paper we classify small and large super-Vandermonde sets.
Databáze: OpenAIRE