Vandermonde sets and super-Vandermonde sets
Autor: | Péter Sziklai, Marcella Takáts |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Zdroj: | Finite Fields and Their Applications. 14(4):1056-1067 |
ISSN: | 1071-5797 |
DOI: | 10.1016/j.ffa.2008.06.004 |
Popis: | Given a set T⊆GF(q), |T|=t, wT is defined as the smallest positive integer k for which ∑y∈Tyk≠0. It can be shown that wT⩽t always and wT⩽t−1 if the characteristic p divides t. T is called a Vandermonde set if wT⩾t−1 and a super-Vandermonde set if wT=t. This (extremal) algebraic property is interesting for its own right, but the original motivation comes from finite geometries. In this paper we classify small and large super-Vandermonde sets. |
Databáze: | OpenAIRE |
Externí odkaz: |