Blade coated P3HT:non-fullerene acceptor solar cells: a high-throughput parameter study with a focus on up-scalability

Autor: Rana Adel-Abdelaleim, Enrique Pascual-San-José, Xabier Rodríguez-Martínez, Mariano Campoy-Quiles, Marco Stella, Eugenia Martínez-Ferrero
Přispěvatelé: Ministerio de Economía y Competitividad (España), European Research Council, European Commission, Consejo Superior de Investigaciones Científicas (España), Rodríguez Martínez, Xabier [0000-0002-6715-4392], Martínez Ferrero, Eugenia [0000-0001-7558-0271], Campoy Quiles, Mariano [0000-0002-8911-640X], Rodríguez Martínez, Xabier, Martínez Ferrero, Eugenia, Campoy Quiles, Mariano
Rok vydání: 2019
Předmět:
Zdroj: Journal of Materials Chemistry A
Digital.CSIC. Repositorio Institucional del CSIC
instname
ISSN: 2050-7488
DOI: 10.1039/c9ta07361b
Popis: Combining non-fullerene acceptors (NFAs) with novel low band gap polymers has led to very promising performances. However, research on donors that can reduce the performance–cost gap, such as poly(3-hexylthiophene) (P3HT), can play an instrumental role in the upscaling of this technology. In this paper, we have analysed the influence of several processing parameters on the performance of solar cells based on P3HT:NFA binaries deposited by blade coating. The investigated NFAs include molecules with variations in the side chains and end-capping groups. More precisely, we have looked at devices based on P3HT blended with five NFAs, namely ITIC, ITIC-M, O-IDTBR, EH-IDTBR, and O-IDFBR, and employed PC60BM and ICBA as reference acceptors. More than one thousand doctor-bladed P3HT:NFA samples were manufactured using high throughput techniques using gradients of both thickness and annealing temperature. The combined data for all samples were employed to perform a parameter sensitivity study in order to identify the most influential parameters for P3HT based devices. For all material combinations, we have found that blade coated solar cells fabricated from chlorobenzene/dichlorobenzene mixtures outperform those based on chlorobenzene. For the most promising binary (i.e. P3HT:O-IDTBR), we have investigated in more depth the effects resulting from the choice of solvent, as well as casting temperature and post-deposition thermal annealing. Devices with power conversion efficiencies greater than 5% were obtained regardless of the casting temperature and for a relatively wide thickness range (80–250 nm). Finally, we have shown that encapsulated devices exhibit a stable performance for more than 3000 h and that degradation progresses faster in thicker devices. O-IDTBR has been identified to play a major role in the device degradation.
This work was supported by the Spanish Ministerio de Economía y Competitividad (MINECO) under Grants MAT2015-70850-P, PGC2018-095411-B-I00 and SEV-2015-0496 in the framework of the Spanish Severo Ochoa Centre of Excellence, the EURECAT Technology Centre, European Research Council through project ERC CoG648901 and H2020 Marie Curie actions through the SEPOMO project (Grant number 722651). We are also very thankful to Mr Fernando Gallegos for manufacturing the metallic holder, Mr Martí Gibert for the useful multiplexer/switcher design, Dr Bernhard Dörling for designing the doctor blade controller, Mr Adrián Francisco for helping with Raman fittings and Dr Marta Riba, Mrs Marta Gerbolés, Mrs Anna Crespí and Mr Andrés Gómez for helping with contact angle, XRD and AFM measurements, respectively. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).
Databáze: OpenAIRE