Rigidity for relative 0-cycles
Autor: | Amalendu Krishna, Federico Binda |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Fiber (mathematics) Group (mathematics) Rigidity (psychology) Discrete valuation ring Theoretical Computer Science Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry Mathematics (miscellaneous) Regular scheme Mathematics::K-Theory and Homology FOS: Mathematics 14C25 (Primary) 13F35 14F30 19E15 (Secondary) Algebraic Geometry (math.AG) Mathematics |
Zdroj: | ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE. :241-267 |
ISSN: | 2036-2145 0391-173X |
DOI: | 10.2422/2036-2145.201906_017 |
Popis: | We present a relation between the classical Chow group of relative $0$-cycles on a regular scheme $\mathcal{X}$, projective and flat over an excellent Henselian discrete valuation ring, and the Levine-Weibel Chow group of 0-cycles on the special fiber. We show that these two Chow groups are isomorphic with finite coefficients under extra assumptions. This generalizes a result of Esnault, Kerz and Wittenberg. Comment: 21 pages. Final version. To appear in Annali della Scuola Normale Superiore di Pisa |
Databáze: | OpenAIRE |
Externí odkaz: |