The cohomology rings of homogeneous spaces

Autor: Matthias O. Franz
Rok vydání: 2021
Předmět:
Zdroj: Journal of Topology. 14:1396-1447
ISSN: 1753-8424
1753-8416
DOI: 10.1112/topo.12213
Popis: Let $G$ be a compact connected Lie group and $K$ a closed connected subgroup. Assume that the order of any torsion element in the integral cohomology of $G$ and $K$ is invertible in a given principal ideal domain $k$. It is known that in this case the cohomology of the homogeneous space $G/K$ with coefficients in $k$ and the torsion product of $H^{*}(BK)$ and $k$ over $H^{*}(BG)$ are isomorphic as $k$-modules. We show that this isomorphism is multiplicative and natural in the pair $(G,K)$ provided that 2 is invertible in $k$. The proof uses homotopy Gerstenhaber algebras in an essential way. In particular, we show that the normalized singular cochains on the classifying space of a torus are formal as a homotopy Gerstenhaber algebra.
52 pages; new Sections 2.2 (Notation) and 13 (Examples), appendix expanded, minor changes
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje