Quantization of branched coverings

Autor: A. A. Pavlov, E. V. Troitskii
Rok vydání: 2011
Předmět:
Zdroj: Russian Journal of Mathematical Physics. 18:338-352
ISSN: 1555-6638
1061-9208
DOI: 10.1134/s1061920811030071
Popis: We identify branched coverings (continuous open surjections p:Y->X of Hausdorff spaces with uniformly bounded number of pre-images) with Hilbert C*-modules C(Y) over C(X) and with faithful unital positive conditional expectations E:C(Y)->C(X) topologically of index-finite type. The case of non-branched coverings corresponds to projective finitely generated modules and expectations (algebraically) of index-finite type. This allows to define non-commutative analogues of (branched) coverings.
v2:Small changes in examples and references. Submitted.
Databáze: OpenAIRE