Progressive Raising in Multi-level IR
Autor: | Henk Corporaal, Albert Cohen, Nicolas Vasilache, Lorenzo Chelini, Tobias Grosser, Oleksandr Zinenko, Andi Drebes |
---|---|
Přispěvatelé: | Eindhoven University of Technology [Eindhoven] (TU/e), Parallélisme de Kahn Synchrone ( Parkas), Département d'informatique - ENS Paris (DI-ENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Google Inc., University of Edinburgh, The research of Lorenzo Chelini and Andi Drebes is partially supported by the European Commission Horizon2020 programme through the NeMeCo grant agreement, id.676240, and the MNEMOSENE grant agreement, id 780215. The research of Tobias Grosser is partially supported through the Swiss National Science Foundation under the Ambizione programme (grant PZ00P2168016) and ARM Ltd. and XilinxInc., in the context of Polly Labs., European Project: 676240,H2020,H2020-MSCA-ITN-2015,NeMeCo(2016), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Département d'informatique - ENS Paris (DI-ENS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Département d'informatique de l'École normale supérieure (DI-ENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
[INFO.INFO-PL]Computer Science [cs]/Programming Languages [cs.PL]
Programming language Computer science MLIR Progressive raising 010103 numerical & computational mathematics 02 engineering and technology Entry point Multi-level intermediate representation computer.software_genre 01 natural sciences Raising (linguistics) Pipeline (software) Set (abstract data type) 0202 electrical engineering electronic engineering information engineering Leverage (statistics) 020201 artificial intelligence & image processing Abstraction Compiler Affine transformation 0101 mathematics computer |
Zdroj: | CGO 2021 : International Symposium on Code Generation and Optimization CGO 2021 : International Symposium on Code Generation and Optimization, Feb 2021, Seoul / Virtual, South Korea CGO |
Popis: | International audience; Multi-level intermediate representations (IR) show great promise for lowering the design costs for domain-specific compilers by providing a reusable, extensible, and non-opinionated framework for expressing domain-specific and high-level abstractions directly in the IR. But, while such frameworks support the progressive lowering of high-level representations to low-level IR, they do not raise in the opposite direction. Thus, the entry point into the compilation pipeline defines the highest level of abstraction for all subsequent transformations, limiting the set of applicable optimizations, in particular for general-purpose languages that are not semantically rich enough to model the required abstractions. We propose Progressive Raising, a complementary approach to the progressive lowering in multi-level IRs that raises from lower to higher-level abstractions to leverage domain-specific transformations for low-level representations. We further introduce Multi-Level Tactics, our declarative approach for progressive raising, implemented on top of the MLIR framework, and demonstrate the progressive raising from affine loop nests specified in a general-purpose language to high-level linear algebra operations. Our raising paths leverage subsequent high-level domain-specific transformations with significant performance improvements. |
Databáze: | OpenAIRE |
Externí odkaz: |