Linkage of sets of quaternion algebras in characteristic 2
Autor: | Adam Chapman |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Algebra and Number Theory 010102 general mathematics Field (mathematics) Mathematics - Rings and Algebras 010103 numerical & computational mathematics Linkage (mechanical) Mathematics - Commutative Algebra Commutative Algebra (math.AC) 01 natural sciences law.invention Rings and Algebras (math.RA) law 16K20 (primary) 11E81 11E04 (secondary) FOS: Mathematics 0101 mathematics Quaternion Mathematics |
Zdroj: | Communications in Algebra. 49:3680-3684 |
ISSN: | 1532-4125 0092-7872 |
DOI: | 10.1080/00927872.2021.1902532 |
Popis: | This note contains two new observations on the linkage properties of quaternion algebras over fields of characteristic 2: first, that a 3-linked field need not be 4-linked (a case which was left open in previous papers) and that three inseparably linked quaternion algebras are also cyclically linked when the base-field is odd-closed. |
Databáze: | OpenAIRE |
Externí odkaz: |