Surface waves along liquid cylinders. Part 2. Varicose, sinuous, sloshing and nonlinear waves
Autor: | Stéphane Perrard, Chi-Tuong Pham, Gabriel Le Doudic |
---|---|
Přispěvatelé: | Matière et Systèmes Complexes (MSC), Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de Physique Statistique de l'ENS (LPS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), COuplages Multiphysiques Et Transferts (COMET), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Mécanique-Energétique (M.-E.), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
dispersive regime
Slosh dynamics Context (language use) 01 natural sciences Leidenfrost effect 010305 fluids & plasmas experimental set up Physics::Fluid Dynamics rectangular channel dispersion relations [SPI]Engineering Sciences [physics] Inviscid flow Dispersion relation 0103 physical sciences 010306 general physics drops Physics [PHYS]Physics [physics] saint venant equation Mechanical Engineering plateau borders Mechanics Condensed Matter Physics gravity capillary waves Nonlinear system Mechanics of Materials Surface wave solitary waves liquid cylinders Soap film |
Zdroj: | Journal of Fluid Mechanics Journal of Fluid Mechanics, 2021, ⟨10.1017/jfm.2021.502⟩ |
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2021.502⟩ |
Popis: | No comment; International audience; © 2021 The Author(s). Published by Cambridge University Press.Gravity-capillary waves propagating along extended liquid cylinders in the inviscid limit are studied in the context of experiments on sessile cylinders deposited upon superhydrophobic substrates, with tunable geometries. In Part 1 of this work (Pham et al., J. Fluid Mech., vol. 891, 2020, A5), we characterised the non-dispersive regime of the varicose waves. In this second part, we characterise the varicose waves in the dispersive regime, as well as the sinuous and the sloshing modes. We numerically study the shape function of the system (the counterpart of the standard function of the dispersion relation of a gravity-capillary wave in a rectangular channel) and the cutoff frequencies of the sloshing modes, and show how they depend on the geometry of the substrate. A reduced-gravity effect is evidenced and the transition between a capillary- and a gravity-dominated regime is expressed in terms of an effective Bond number and an effective surface tension. Semiquantitative agreement is found between the theoretical computations and the experiments. As a consequence of these results, resorting to the inviscid section-averaged Saint-Venant equations, we propose a Korteweg-de Vries equation with adapted coefficients that governs the propagation of localised nonlinear waves. We relate these results to the propagation of depression solitons observed in our experimental set-up and along Leidenfrost cylinders levitating above a hot substrate (Perrard et al., Phys. Rev. E, vol. 92, 2015, 011002(R)). We extend our derivation of the Korteweg-de Vries equation to solitary-like waves propagating along Plateau borders in soap films, evidenced by Argentina et al. (J. Fluid. Mech., vol. 765, 2015, pp. 1-16). |
Databáze: | OpenAIRE |
Externí odkaz: |