ACS Catal
Autor: | Malek Harb, Vivek Pratap Hitaishi, Anne de Poulpiquet, Ievgen Mazurenko, Romain Clement, Marion Taris, Elisabeth Lojou, David Duché, Sabine Castano, Sophie Lecomte, Marianne Ilbert |
---|---|
Přispěvatelé: | Chimie et Biologie des Membranes et des Nanoobjets (CBMN), Université Sciences et Technologies - Bordeaux 1-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Centre National de la Recherche Scientifique (CNRS), Bioénergétique et Ingénierie des Protéines (BIP ), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), University of Leeds, École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Université de Bordeaux (UB)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE05-0024,Enzymor,Bases moléculaires de l'immobilisation fonctionnelle d'enzymes pour des biopiles performantes(2016) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Immobilized enzyme
02 engineering and technology Peptides and proteins 010402 general chemistry Electrocatalyst Electrochemistry 01 natural sciences Redox Catalysis Self-assembled Surface plasmon resonance [CHIM]Chemical Sciences Bilirubin oxidase Monolayers PMIRRAS Ellipsometry Chemistry Self-assembled monolayer General Chemistry [CHIM.MATE]Chemical Sciences/Material chemistry 021001 nanoscience & nanotechnology Electrostatics Enzymes 0104 chemical sciences Chemical engineering Electrodes Stability Adsorption Gold 0210 nano-technology Protein adsorption |
Zdroj: | ACS Catalysis ACS Catalysis, American Chemical Society, 2018, 8 (12), pp.12004-12014 ACS Catalysis, American Chemical Society, 2018, 8 (12), pp.12004-12014. ⟨10.1021/acscatal.8b03443⟩ ACS Catalysis, 2018, 8 (12), pp.12004-12014. ⟨10.1021/acscatal.8b03443⟩ |
ISSN: | 2155-5435 |
DOI: | 10.1021/acscatal.8b03443⟩ |
Popis: | International audience; The oxygen reduction reaction is the limiting step in fuel cells, and many works are in progress to find efficient cathode catalysts. Among them, bilirubin oxidases are copper-based enzymes that reduce oxygen into water with low overpotentials. The factors that ensure electrocatalytic efficiency of the enzyme in the immobilized state are not well understood, however. In this work, we use a multiple methodological approach on a wide range of pH values for protein adsorption and electrocatalysis to demonstrate the effect of electrostatic interactions on the electrical wiring, dynamics, and stability of a bilirubin oxidase adsorbed on self-assembled-monolayers on gold. We show on one hand that the global charge of the enzyme controls the loading on the interface and that the specific activity of the immobilized enzyme decreases with the enzyme coverage. On the other hand, we show that the dipole moment of the protein and the charge in the vicinity of the Cu site acting as the entry point of electrons drive the enzyme orientation. In case of weak electrostatic interactions, we demonstrate that local pH variation affects the electron transfer rate as a result of protein mobility on the surface. On the contrary, stronger electrostatic interactions destabilize the protein structure and affect the stability of the catalytic signal. These data illustrate the interplay between immobilized protein dynamics and local environment that control the efficiency of bioelectrocatalysis. |
Databáze: | OpenAIRE |
Externí odkaz: |