New Insights on Gas Hydroquinone Clathrates Using in Situ Raman Spectroscopy: Formation/Dissociation Mechanisms, Kinetics, and Capture Selectivity

Autor: Romuald Coupan, Jean-Philippe Torré, Christophe Dicharry, Eve Péré
Přispěvatelé: Centre National de la Recherche Scientifique - CNRS (FRANCE), Total (FRANCE), Université de Pau et des Pays de l'Adour - UPPA (FRANCE), Laboratoire des Fluides Complexes et leurs Réservoirs (LFCR), TOTAL FINA ELF-Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ORCHIDS project and the ISIFoR Carnot Institute, Centre National de la Recherche Scientifique (CNRS)-Université de Pau et des Pays de l'Adour (UPPA)-TOTAL FINA ELF
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Journal of Physical Chemistry A
Journal of Physical Chemistry A, American Chemical Society, 2017, 121 (29), pp.5450-5458. ⟨10.1021/acs.jpca.7b05082⟩
ISSN: 1089-5639
1520-5215
DOI: 10.1021/acs.jpca.7b05082⟩
Popis: International audience; Hydroquinone (HQ) is known to form organic clathrates with different gaseous species over a wide range of pressures and temperatures. However, the enclathration reaction involving HQ is not fully understood. This work offers new elements of understanding HQ clathrate formation and dissociation mechanisms. The kinetics and selectivity of the enclathration reaction were also investigated. The focus was placed on HQ clathrates formed with CO2 and CH4 as guest molecules for potential use in practical applications for the separation of a CO2/CH4 gas mixture. The structural transition from the native form (α-HQ) to the clathrate form (β-HQ), as well as the reverse process, were tracked using in situ Raman spectroscopy. The clathrate formation was conducted at 323 K and 3.0 MPa, and the dissociation was conducted at 343 K and 1.0 kPa. The experiments with CH4 confirmed that a small amount of gas can fill the α-HQ before the phase transition from α- to β-HQ begins. The dissociation of the CO2–HQ clathrates highlighted the presence of a clathrate structure with no guest molecules. We can therefore conclude that HQ clathrate formation and dissociation are two-step reactions that pass through two distinct reaction intermediates: guest-loaded α-HQ and guest-free β-HQ. When an equimolar CO2/CH4 gas mixture is put in contact with either the α-HQ or the guest-free β-HQ, the CO2 is preferentially captured. Moreover, the guest-free β-HQ can retain the CO2 quicker and more selectively.
Databáze: OpenAIRE