Nasal Administration of Lipopolysaccharide Exacerbates Allergic Rhinitis through Th2 Cytokine Production from Mast Cells

Autor: Hideyuki Kawauchi, Takafumi Fuchiwaki, Ichiro Morikura, Noriaki Aoi, Tatsunori Sakamoto
Rok vydání: 2021
Předmět:
Zdroj: Allergies
Volume 1
Issue 4
Pages 20-224
Allergies, Vol 1, Iss 20, Pp 216-224 (2021)
ISSN: 2313-5786
Popis: Background: Microbial infection or exposure to endotoxin later in life exacerbates established asthma. Mast cells are involved in the exacerbation of asthma. This exacerbation involves a toll-like receptor (TLR)–mediated response of mast cells. In the clinical practice of otolaryngology, otolaryngologists experience an exacerbation of nasal congestion when infectious rhinitis develops in patients with allergic rhinitis, but the mechanisms are unknown. Therefore, this study investigated the effect of lipopolysaccharide (LPS) on allergic rhinitis using a mouse allergic rhinitis model. Methods: Female BALB/c mice, TLR4 gene mutant C3H/HeJ mice or mast cell–deficient WBB6F1-W/Wv mice were sensitized intraperitoneally with ovalbumin (OVA)/alum, and were intranasal challenged with OVA and/or LPS. Nasal symptoms and histologic changes were examined. Cytokines in nasal tissue were examined by Western blot. The effects of LPS on degranulation and cytokine production of bone marrow–derived mast cells (BMMCs) were investigated. Results: Nasal administration of LPS together with the antigen exacerbated nasal symptoms, eosinophil infiltration of the nasal mucosa, and increased IL-5 production in the nasal mucosa. It was not observed in C3H/HeJ mice and WBB6F1-W/Wv mice. The addition of LPS increased the production of IL-5 from BMMCs in a dose-dependent manner, but no effect on degranulation was observed. Conclusions: Intranasal administration of LPS exacerbates allergic rhinitis through Th2 cytokine production from mast cells. This observation provides clues to the mechanism of exacerbation of allergic rhinitis caused by an infection in daily clinical practice.
Databáze: OpenAIRE